login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.
8

%I #42 May 31 2024 14:41:55

%S 0,1,0,-1,1,0,1,0,1,0,-1,1,1,1,0,1,0,3,2,1,0,-1,1,5,7,3,1,0,1,0,11,20,

%T 13,4,1,0,-1,1,21,61,51,21,5,1,0,1,0,43,182,205,104,31,6,1,0,-1,1,85,

%U 547,819,521,185,43,7,1,0,1,0,171,1640,3277,2604,1111,300,57,8,1,0,-1,1,341,4921,13107,13021,6665,2101,455,73,9,1,0

%N Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.

%C For n >= 1, T(n, k) equals the number of walks of length k between any two distinct vertices of the complete graph K_(n+1). - _Peter Bala_, May 30 2024

%H Seiichi Manyama, <a href="/A062160/b062160.txt">Antidiagonals n = 0..139, flattened</a>

%H M. Dukes and C. D. White, <a href="http://arxiv.org/abs/1603.01589">Web Matrices: Structural Properties and Generating Combinatorial Identities</a>, arXiv:1603.01589 [math.CO], 2016.

%F T(n, k) = n^(k-1) - n^(k-2) + n^(k-3) - ... + (-1)^(k-1) = n^(k-1) - T(n, k-1) = n*T(n, k-1) - (-1)^k = (n - 1)*T(n, k-1) + n*T(n, k-2) = round[n^k/(n+1)] for n > 1.

%F T(n, k) = (-1)^(k+1) * resultant( n*x + 1, (x^k-1)/(x-1) ). - _Max Alekseyev_, Sep 28 2021

%F G.f. of row n: x/((1+x) * (1-n*x)). - _Seiichi Manyama_, Apr 12 2019

%F E.g.f. of row n: (exp(n*x) - exp(-x))/(n+1). - _Stefano Spezia_, Feb 20 2024

%F From _Peter Bala_, May 31 2024: (Start)

%F Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = (m + 1)^(n-1) for n >= 1.

%F Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1 + m_2 + m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A109502.

%F T(m_1 + m_2 + m_1*m_2, k) = Sum_{i = 0..k} Sum_{j = i..k} binomial(k, i)* binomial(k-i, j-i)*T(m_1, j)*T(m_2, k-i). (End)

%e From _Seiichi Manyama_, Apr 12 2019: (Start)

%e Square array begins:

%e 0, 1, -1, 1, -1, 1, -1, 1, ...

%e 0, 1, 0, 1, 0, 1, 0, 1, ...

%e 0, 1, 1, 3, 5, 11, 21, 43, ...

%e 0, 1, 2, 7, 20, 61, 182, 547, ...

%e 0, 1, 3, 13, 51, 205, 819, 3277, ...

%e 0, 1, 4, 21, 104, 521, 2604, 13021, ...

%e 0, 1, 5, 31, 185, 1111, 6665, 39991, ...

%e 0, 1, 6, 43, 300, 2101, 14706, 102943, ... (End)

%p seq(print(seq((n^k - (-1)^k)/(n+1), k = 0..10)), n = 0..10); # _Peter Bala_, May 31 2024

%t T[n_,k_]:=(n^k - (-1)^k)/(n+1); Join[{0},Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,12}]]//Flatten (* _Stefano Spezia_, Feb 20 2024 *)

%Y Rows include A062157, A000035, A001045, A015518, A015521, A015531, A015540, A015552, A015565, A015577, A015585, A015592, A015609.

%Y Columns include A000004, A000012, A023443, A002061, A062158, A060884, A062159, A060888.

%Y Related to repunits in negative bases (cf. A055129 for positive bases).

%Y Main diagonal gives A081216.

%Y Cf. A109502.

%K sign,tabl

%O 0,18

%A _Henry Bottomley_, Jun 08 2001