login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 2 (most significant digit on right).
143

%I #23 May 26 2024 12:52:23

%S 1,3,7,39,63,523,4983,25007,892217,1142775,1381311,1751751

%N Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 2 (most significant digit on right).

%C This sequence differs from A029495 in that all least significant zeros are removed before concatenation.

%C No more terms < 10^7. [_Lars Blomberg_, Oct 17 2011]

%H <a href="/index/N#concat">Index entries for related sequences</a>

%e 1234567 -> (1)(01)(11)(001)(101)(011)(111) base 2 -> 1111110111111 base 2 = 8127 and 7 divides 8127.

%t b = 2; c = {}; Select[Range[10^4], Divisible[FromDigits[

%t c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* _Robert Price_, Mar 07 2020 *)

%o (Python)

%o def agen():

%o k, concat = 1, 1

%o while True:

%o if concat%k == 0: yield k

%o revbink_even = (bin(k+1)[2:])[::-1]

%o revbink_odd = '1' + revbink_even[1:]

%o add_str = revbink_even[revbink_even.index('1'):] + revbink_odd

%o concat = (concat << len(add_str)) + int(add_str, 2)

%o k += 2

%o g = agen()

%o print([next(g) for i in range(8)]) # _Michael S. Branicky_, Jan 03 2021

%Y Cf. A029447-A029470, A029471-A029494, A029495-A029518, A029519-A029542, A061931-A061954, A061955-A061978.

%K nonn,base,more

%O 1,2

%A Larry Reeves (larryr(AT)acm.org), May 24 2001

%E Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002

%E a(9)-a(12) from _Lars Blomberg_, Oct 17 2011