login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let H_n = n-th Hilbert matrix; sequence gives 1 / ( det(H_n) * denominator(permanent(H_n)) ).
1

%I #27 Nov 22 2024 19:16:54

%S 1,1,1,27,567,1,1,1,7,9,5103,1275989841,992436543,48629390607,

%T 169706648853,40257567,63,1,7,31,1,3969,25865973,117649,117649,16807,

%U 49,9,81,117369,59049,33480783,930196594089,4238886345135097131,169560200598623521407

%N Let H_n = n-th Hilbert matrix; sequence gives 1 / ( det(H_n) * denominator(permanent(H_n)) ).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Permanent.html">Permanent.</a>

%F a(n) = 1/(denominator(permanent(hilbert(n)))*det(hilbert(n))), where hilbert(n) denotes the n-th Hilbert matrix.

%p with(linalg): seq(1/(denom(permanent(hilbert(n)))*det(hilbert(n))), n=1..16);

%t Permanent[m_List] := With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]]; f[n_] := Block[{i = Table[1/(i + j - 1), {i, n}, {j, n}]}, 1/(Det[i]Denominator[Permanent[i]])]; Table[ f[n], {n, 1, 18}] (* _Robert G. Wilson v_, Feb 06 2004 *)

%o (PARI) permRWN(a)=n=matsize(a)[1]; if(n==1,return(a[1,1])); n1=n-1; sg=1; m=1; nc=0; in=vector(n); x=in; for(i=1,n,x[i]=a[i,n]-sum(j=1,n,a[i,j])/2); p=prod(i=1,n,x[i]); while(m,sg=-sg; j=1; if((nc%2)!=0,j++; while(in[j-1]==0,j++)); in[j]=1-in[j]; nc+=2*in[j]-1; m=nc!=in[n1]; z=2*in[j]-1; for(i=1,n,x[i]+=z*a[i,j]); p+=sg*prod(i=1,n,x[i])); return(2*(2*(n%2)-1)*p)

%o for(n=1,23,a=mathilbert(n); print1(1/(matdet(a)*denominator(permRWN(a)))", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 10 2007

%o (PARI) for(n=1, 25, a=mathilbert(n); print1(1 / (matdet(a) * denominator(matpermanent(a)))", ")) \\ _Vaclav Kotesovec_, Aug 13 2021

%Y Cf. A005249.

%K nonn

%O 1,4

%A _Asher Auel_, May 20 2001

%E a(18)-a(20) from _Robert G. Wilson v_, Feb 09 2004

%E a(21) from _Eric W. Weisstein_, Feb 19, 2004

%E a(22) and a(23) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 10 2007

%E a(24)-a(34) from _Vaclav Kotesovec_, Aug 14 2021

%E a(35) from _Vaclav Kotesovec_, Aug 16 2021