Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Aug 25 2022 09:17:13
%S 1,8,50,302,1814,10886,65318,391910,2351462,14108774,84652646,
%T 507915878,3047495270,18284971622,109709829734,658258978406,
%U 3949553870438,23697323222630,142183939335782,853103636014694
%N a(n) = (7*6^n - 2)/5.
%C Sum of n-th row of triangle of powers of 6: 1; 1 6 1; 1 6 36 6 1; 1 6 36 216 36 6 1; ....
%H Harry J. Smith, <a href="/A061801/b061801.txt">Table of n, a(n) for n=0,...,200</a>
%F G.f.: (1+x)/(1-6*x)/(1-x) [_Zerinvary Lajos_, Jan 11 2009]
%F a(n) = 6*a(n-1) + 2, a(0) = 1. - _Philippe Deléham_, Feb 23 2014
%F a(n) = Sum_{k=0..n} A112468(n,k)*7^k. - _Philippe Deléham_, Feb 23 2014
%e a(2) = 50 = 1 + 6 + 36 + 6 + 1.
%e G.f. = 1 + 8*x + 50*x^2 + 302*x^3 + 1814*x^4 + 10886*x^5 + 65318*x^6 + ...
%p restart:g:=(1+x)/(1-6*x)/(1-x): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=0..30); # _Zerinvary Lajos_, Jan 11 2009
%o (PARI) { for (n=0, 200, write("b061801.txt", n, " ", (7*6^n - 2)/5) ) } \\ _Harry J. Smith_, Jul 28 2009
%Y Cf. A057651, A112468, A112739.
%K nonn,easy
%O 0,2
%A _Amarnath Murthy_, May 28 2001
%E More terms from Larry Reeves (larryr(AT)acm.org) and _Jason Earls_, May 28 2001.
%E Better description from _Dean Hickerson_, Jun 06 2001
%E Divided g.f. by x to match the offset. - _Philippe Deléham_, Feb 23 2014