login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} (2k-1)^(2k-1).
3

%I #23 Jul 16 2022 12:54:43

%S 1,28,3153,826696,388247185,285699917796,303160806510049,

%T 438197051187369424,827678458937524133601,1979247334119251113257580,

%U 5844566265720101772494382001,20886312566113632136127527292568

%N a(n) = Sum_{k=1..n} (2k-1)^(2k-1).

%H Harry J. Smith, <a href="/A061787/b061787.txt">Table of n, a(n) for n = 1..100</a>

%F a(n) ~ exp(-1) * 2^(2*n-1) * n^(2*n-1). - _Vaclav Kotesovec_, Dec 09 2021

%e a(3) = 1 + 3^3 + 5^5 = 3153.

%t Array[Sum[(2 k - 1)^(2 k - 1), {k, #}] &, 12] (* _Michael De Vlieger_, Jul 01 2018 *)

%t Accumulate[#^#&/@Range[1,25,2]] (* _Harvey P. Dale_, Jul 16 2022 *)

%o (PARI) { a=n=0; forstep (p=1, 200, 2, write("b061787.txt", n++, " ", a+=p^p) ) } \\ _Harry J. Smith_, Jul 28 2009

%o (GAP) List([1..13],n->Sum([1..n],k->(2*k-1)^(2*k-1))); # _Muniru A Asiru_, Jul 01 2018

%Y Partial sums of A085529.

%K nonn,easy

%O 1,2

%A _Amarnath Murthy_, May 25 2001

%E Corrected and extended by _Jason Earls_, May 27 2001