login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{j=0..floor(n/2)} binomial(n,j).
1

%I #18 Feb 26 2022 14:35:09

%S 1,2,3,24,50,1800,5145,878080,3429216,2857680000,15219319500,

%T 63117561830400,457937132487120,9577928124440387712,

%U 94609025993497640625,10077943267571584204800000

%N a(n) = Product_{j=0..floor(n/2)} binomial(n,j).

%H Harry J. Smith, <a href="/A061778/b061778.txt">Table of n, a(n) for n = 1..97</a>

%F For odd n, a(n) = sqrt(A001142(n)); for even n, (a(n)^2)/A001405(n) = A001142(n).

%e n=5: a(5) = 1*5*10 = 50;

%e n=6: a(6) = 1*6*15*20 = 1800. [corrected by _Jon E. Schoenfield_, Jul 01 2018]

%t Table[Apply[Times, Table[Binomial[n, j], {j, 0, Floor[n/2]}]], {w, 1, 20}]

%t Table[Product[Binomial[n,j],{j,0,Floor[n/2]}],{n,20}] (* _Harvey P. Dale_, Dec 06 2018 *)

%o (PARI) { for (n=1, 97, write("b061778.txt", n, " ", prod(j=0, n\2, binomial(n, j))) ) } \\ _Harry J. Smith_, Jul 27 2009

%o (GAP) List([1..20],n->Product([0..Int(n/2)],j->Binomial(n,j))); # _Muniru A Asiru_, Jul 01 2018

%Y Cf. A001142, A001405.

%K easy,nonn

%O 1,2

%A _Labos Elemer_, Jun 22 2001