login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Generalized Bell numbers.
4

%I #10 Jul 12 2020 19:35:11

%S 1,0,1,1,19,101,1776,23717,515971,11893597,346475728,11497161545,

%T 444592761746,19536147771219,970739908493421,54010183143383066,

%U 3341831947578263267,228462339968313577341,17160142419913160027448,1409008382280004776187961

%N Generalized Bell numbers.

%H J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4.

%F Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x)) - 1 - x). - _Ilya Gutkovskiy_, Jul 12 2020

%Y Cf. A023998, A061697.

%K nonn

%O 0,5

%A _N. J. A. Sloane_, Jun 19 2001

%E More terms from _Ilya Gutkovskiy_, Jul 12 2020