login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Bell numbers.
4

%I #10 Jul 12 2020 19:35:11

%S 1,0,1,1,19,101,1776,23717,515971,11893597,346475728,11497161545,

%T 444592761746,19536147771219,970739908493421,54010183143383066,

%U 3341831947578263267,228462339968313577341,17160142419913160027448,1409008382280004776187961

%N Generalized Bell numbers.

%H J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4.

%F Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x)) - 1 - x). - _Ilya Gutkovskiy_, Jul 12 2020

%Y Cf. A023998, A061697.

%K nonn

%O 0,5

%A _N. J. A. Sloane_, Jun 19 2001

%E More terms from _Ilya Gutkovskiy_, Jul 12 2020