login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that sum of digits = number of digits.
16

%I #59 Nov 28 2023 22:00:13

%S 1,11,20,102,111,120,201,210,300,1003,1012,1021,1030,1102,1111,1120,

%T 1201,1210,1300,2002,2011,2020,2101,2110,2200,3001,3010,3100,4000,

%U 10004,10013,10022,10031,10040,10103,10112,10121,10130,10202,10211

%N Numbers n such that sum of digits = number of digits.

%C Number of d-digit entries is A071976(d). - _Robert Israel_, Apr 06 2016

%C Equivalently, numbers n > 0 for which the arithmetic mean of the digits equals 1. - _M. F. Hasler_, Dec 07 2018

%H Robert Israel, <a href="/A061384/b061384.txt">Table of n, a(n) for n = 1..10000</a>

%F {n > 0 | A007953(n) = A055642(n)}. - _M. F. Hasler_, Dec 07 2018

%e 120 is a term as the arithmetic mean of the digits is (1+2+0)/3 = 1.

%p Q:= proc(n,s) option remember;

%p # n-digit integers with digit sum s

%p if s = 0 then []

%p elif s = 1 then [10^(n-1)]

%p elif n = 1 then

%p if s <= 9 then [s]

%p else []

%p fi

%p else

%p map(op,[seq(map(t -> 10*t+i, procname(n-1,s-i)), i=0..min(9,s-1))])

%p fi

%p end proc:

%p map(op, [seq(sort(Q(n,n)),n=1..5)]); # _Robert Israel_, Apr 06 2016

%t Select[Range[15000], Total[IntegerDigits[#]] == IntegerLength[#]&] (* _Harvey P. Dale_, Jan 08 2011 *)

%o (Magma) [ n: n in [1..10215] | &+Intseq(n) eq #Intseq(n) ]; // _Bruno Berselli_, Jun 30 2011

%o (PARI) isok(n) = (sumdigits(n)/#Str(n) == 1); \\ _Michel Marcus_, Mar 28 2016

%o (PARI) is_A061384(n)={sumdigits(n)==logint(n+!n,10)+1} \\ _M. F. Hasler_, Dec 07 2018

%o (PARI) A061384_row(n)={my(L=List(), u=vector(n, i, i==1), d); forvec(v=vector(n+1, i, [if(i>n,n, 1), if(i>1, n, 1)]), vecmax(d=v[^1]-v[^-1]+u)<10 && listput(L,fromdigits(d)),1);Vec(L)} \\ Return the list of all n-digit terms. - _M. F. Hasler_, Dec 07 2018

%o (Python)

%o from itertools import count, islice

%o def Q(n, s): # length-n strings of 0..9 with sum s, after _Robert Israel_

%o if s == 0: yield "0"*n

%o elif n == 1: yield (str(s) if s <= 9 else "")

%o else:

%o m = min(9, s) + 1

%o yield from (str(i)+t for i in range(m) for t in Q(n-1, s-i))

%o def agen():

%o yield from (int(t) for n in count(1) for t in Q(n, n) if t[0] != "0")

%o print(list(islice(agen(), 43))) # _Michael S. Branicky_, May 26 2022

%o (Python)

%o from itertools import count, islice

%o from collections import Counter

%o from sympy.utilities.iterables import partitions, multiset_permutations

%o def A061384_gen(): # generator of terms

%o for l in count(1):

%o for i in range(1,min(l,9)+1):

%o yield from sorted(int(str(i)+''.join(map(str,j))) for s,p in partitions(l-i,k=9,size=True) for j in multiset_permutations([0]*(l-1-s)+list(Counter(p).elements())))

%o A061384_list = list(islice(A061384_gen(),30)) # _Chai Wah Wu_, Nov 28 2023

%Y Totally balanced subset: A071154. Cf. also A061383-A061388, A061423-A061425.

%Y Cf. A071976.

%Y Cf. A007953 (sum of digits), A055642 (number of digits).

%K nonn,base,easy

%O 1,2

%A _Amarnath Murthy_, May 03 2001

%E More terms from _Erich Friedman_, May 08 2001