Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:45:03
%S 22,25,27,32,33,35,52,55,57,72,75,77,222,225,232,235,237,252,253,255,
%T 272,273,275,322,323,325,327,332,333,335,352,355,357,372,375,377,522,
%U 525,527,532,533,535,537,552,553,555,572,573,575,722,723,725,732,735
%N Composite numbers with all prime digits.
%H T. D. Noe, <a href="/A061371/b061371.txt">Table of n, a(n) for n = 1..1000</a>
%e a(5) = 35 is composite with digits 3 and 5 which are primes.
%e 22 is nonprime and has prime digits, twice 2;
%e 573 is nonprime and has prime digits, 3, 5 and 7.
%p stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end:
%p ts_stnepf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='false') then stpf:=stpf+1; # number of nonprime digits fi od; RETURN(stpf) end:
%p ts_nepr_neprn0:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='false' and ts_stnepf(i) = 0) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_nepr_neprn0(4000); # _Jani Melik_, Apr 11 2004
%t With[{comps=Complement[Range[1000],Prime[Range[PrimePi[1000]]]]}, Select[ comps, And@@PrimeQ[IntegerDigits[#]]&]] (* _Harvey P. Dale_, Dec 21 2011 *)
%t Table[Select[FromDigits/@Tuples[{2,3,5,7},n],CompositeQ],{n,2,4}]//Flatten (* _Harvey P. Dale_, Oct 05 2019 *)
%o (Magma) [ n: n in [22..736] | not IsPrime(n) and Set(Intseq(n)) subset [2,3,5,7] ]; // _Bruno Berselli_, Dec 21 2011
%Y Cf. A061372.
%K nonn,base
%O 1,1
%A _Amarnath Murthy_, May 02 2001
%E Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 08 2001