%I #4 Mar 30 2012 18:51:34
%S 1,1,1,-2,2,1,4,1,3,1,-8,2,6,4,1,16,1,12,13,5,1,-32,2,24,40,22,6,1,64,
%T 1,48,121,92,33,7,1,-128,2,96,364,376,174,46,8,1,256,1,192,1093,1520,
%U 897,292,61,9,1,-512,2,384,3280,6112,4566,1816,452,78,10,1,1024,1,768,9841,24512,23073,11152,3289,660,97,11,1,-2048
%N Table by antidiagonals of rows of sequences where each row is binomial transform of preceding row and row 1 is (1,2,1,2,1,2,1,2,...).
%F T(n, k) =(3n^k-(n-2)^k)/2. Coefficient of x^k in expansion of (1-(n-3)x)/((1-nx)(1-(n-2)x)).
%Y Rows include A011782 (but signed), A000034, A003945, A003462, A010036. Columns include A000012, A000027, A028872.
%K sign,tabl
%O 0,4
%A _Henry Bottomley_, Jun 05 2001