Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Oct 06 2023 08:33:57
%S 0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,
%T 3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,
%U 6,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,11,12,13,14
%N Number of zeros in the concatenation n(n-1)(n-2)(n-3)...321.
%C The number of zeros necessary to write down all the numbers 1, 2, ..., n. Thus, the partial sums of A055641 are given by a(n)+1 (for n>=1). - _Hieronymus Fischer_, Jun 12 2012
%H Hieronymus Fischer, <a href="/A061217/b061217.txt">Table of n, a(n) for n = 1..10000</a>
%H Tanya Khovanova and Gregory Marton, <a href="https://arxiv.org/abs/2305.10357">Archive Labeling Sequences</a>, arXiv:2305.10357 [math.HO], 2023.
%F From _Hieronymus Fischer_, Jun 12 2012: (Start)
%F a(n) = (m+1)*(n+1) - (10^(m+1)-1)/9 + (1/2)*Sum_{j=1..m+1} (floor(n/10^j)*(2n + 2 - (1 + floor(n/10^j))*10^j) - floor(n/10^j + 9/10)*(2n + 2 + ((4/5 - floor(n/10^j + 9/10))*10^j)), where m=floor(log_10(n)).
%F a(n) = A117804(n+1) - (n+1)*A054640(n) + (1/2)*Sum_{j=1..m+1} ((floor(n/10^j + 9/10)^2 - floor(n/10^j)^2)*10^j - (4/5*floor(n/10^j + 9/10) + floor(n/10^j))*10^j), where m=floor(log_10(n)).
%F a(10^m-1) = m*10^(m-1) - (10^m-1)/9.
%F (This is the total number of zeros occurring in all the numbers 1..10^m-1 or numbers with <= m places excluding zero.)
%F G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (1-x^10^j)*x^10^(j+1)/(1-x^10^(j+1)). (End)
%e a(30) = 3 since number of zeros in 302928272625242322212019181716151413121110987654321 is 3. (This example implies offset = 1.)
%t Table[Count[Flatten[IntegerDigits/@Table[x-n,{n,0,x-1}]],0],{x,110}] (* _Harvey P. Dale_, Aug 10 2011 *)
%o (Haskell)
%o a061217 n = a061217_list !! (n-1)
%o a061217_list = scanl1 (+) $ map a055641 [1..]
%o -- _Reinhard Zumkeller_, Oct 27 2013
%o (PARI) a(n) = my(m=logint(n,10)); (m+1)*(n+1) - (10^(m+1)-1)/9 + (1/2) * sum(j=1, m+1, (n\10^j * (2*n+2 - (1 + n\10^j) * 10 ^ j) - floor(n/10^j+9/10) * (2*n+2 + ((4/5 - floor(n / 10^j + 9 / 10))*10^j)))) \\ adapted from formula by _Hieronymus Fischer_ \\ _David A. Corneth_, Jan 23 2019
%Y Cf. A055640, A055641, A102669-A102685, A117804.
%K nonn,base
%O 1,20
%A _Amarnath Murthy_, Apr 22 2001
%E Corrected and extended by _Patrick De Geest_, Jun 05 2001
%E Offset changed to 1 by _Hieronymus Fischer_, Jun 12 2012