%I #11 Jan 17 2017 12:31:39
%S 1,70,905,6666,37580,181074,786715,3176210,12139859,44471340,
%T 157483176,542468100,1826073525,6028577566,19573942365,62643859374,
%U 197971385860,618724626390,1914707164559,5873145245930
%N Fourth column of Lucas bisection triangle (even part).
%C Numerator of g.f. is row polynomial Sum_{m=0..6} A061186(4,m)*x^m.
%H Matthew House, <a href="/A061170/b061170.txt">Table of n, a(n) for n = 0..2354</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (12,-58,144,-195,144,-58,12,-1).
%F a(n) = A060923(n+3, 3).
%F G.f.: (1+58*x+123*x^2-278*x^3+193*x^4-72*x^5+16*x^6)/(1-3*x+x^2)^4.
%Y Cf. A002878(n) = A060923(n, 0).
%Y Cf. A060934, A061169.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Apr 20 2001