login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (6n)!n!/((3n)!(2n)!^2).
10

%I #53 Jan 04 2025 22:32:30

%S 1,30,2310,204204,19122246,1848483780,182327718300,18236779032600,

%T 1842826521244230,187679234340049620,19232182592635611060,

%U 1980665038436368775400,204826599735691440534300,21255328931341321610645544,2212241139727064219063537016

%N a(n) = (6n)!n!/((3n)!(2n)!^2).

%C According to page 781 of the cited reference the generating function F(x) for a(n) is algebraic but not obviously so and the minimal polynomial satisfied by F(x) is quite large.

%C This sequence is the particular case a = 3, b = 1 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and gcd(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A211419 (a = 3, b = 2), A211420 (a = 4, b = 1) and A211421 (a = 4, b = 3) and A061163 (a = 5, b = 1). The o.g.f. Sum_{n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas). - _Peter Bala_, Apr 10 2012

%D M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, pp. 771-808.

%D R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

%H Harry J. Smith, <a href="/A061162/b061162.txt">Table of n, a(n) for n = 0..100</a>

%H J. W. Bober, <a href="http://arxiv.org/abs/0709.1977">Factorial ratios, hypergeometric series, and a family of step functions</a>, 2007, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., Vol. 79, Issue 2, (2009) 422-444.

%H W. Mlotkowski and Karol A. Penson, <a href="http://arxiv.org/abs/1309.0595">Probability distributions with binomial moments</a>, arXiv preprint arXiv:1309.0595 [math.PR], 2013.

%H F. Rodriguez-Villegas, <a href="http://arxiv.org/abs/math/0701362">Integral ratios of factorials and algebraic hypergeometric functions</a>, arXiv:math/0701362 [math.NT], 2007.

%F a(n) ~ 1/2*Pi^(-1/2)*n^(-1/2)*2^(2*n)*3^(3*n)*{1 - 1/72*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Jun 11 2002

%F n*(2*n-1)*a(n) -6*(6*n-1)*(6*n-5)*a(n-1)=0. - _R. J. Mathar_, Oct 26 2014

%F From _Peter Bala_, Aug 21 2016: (Start)

%F a(n) = Sum_{k = 0..2*n} binomial(6*n, k)*binomial(4*n - k - 1, 2*n - k).

%F a(n) = Sum_{k = 0..n} binomial(8*n, 2*n - 2*k)*binomial(2*n + k - 1, k).

%F O.g.f. A(x) = Hypergeom([5/6, 1/6], [1/2], 108*x).

%F a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^6/(1 - x)^2. Cf. A091496 and A262732. It follows that the o.g.f. A(x) for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.

%F Let G(x) = 1/x * series reversion( x*(1 - x)/(1 + x)^3 ) = 1 + 4*x + 23*x^2 + 156*x^3 + 1162*x^4 + ..., essentially the o.g.f. for A007297. Then A(x^2) equals the even part of 1 + x*d/dx(Log(G(x)).

%F exp(Sum_{n >= 1} a(n)*x^n/n) = F(x), where F(x) = 1 + 30*x + 1605*x^2 + 107218*x^3 + 8043114*x^4 + 647773116*x^5 + 54730094637*x^6 + ... has integer coefficients since F(x^2) = G(x)*G(-x). Furthermore, F(x)^(1/6) = 1 + 5*x + 205*x^2 + 12328*x^3 + 874444*x^4 + 68022261*x^5 + 5613007167*x^6 + ... appears to have all integer coefficients. (End)

%F a(n) is the n-th moment of the positive weight function w(x) on x = (0,108), i.e., in Maple notation: a(n) = int(x^n*w(x), x=0..108), n=0,1,..., where w(x) = sqrt(3)*(1 + sqrt(1 - x/108))^(2/3)/(12*2^(1/3)*Pi*x^(5/6)*sqrt(1 - x/108)) + 2^(4/3) *sqrt(3)/(864*Pi*x^(1/6)*(1 + sqrt(1 - x/108))^(2/3)*sqrt(1 - x/108)). The weight function w(x) is singular at x=0 and at x=108 and is the solution of the Hausdorff moment problem. This solution is unique. - _Karol A. Penson_, Mar 01 2018

%F a(n) = 2^(4*n)*binomial(-n-1/2, 2*n). - _Ira M. Gessel_, Jan 04 2025

%p A061162 := n->(6*n)!*n!/((3*n)!*(2*n)!^2);

%t a[n_] := 16^n Gamma[3 n + 1/2]/(Gamma[n + 1/2] Gamma[2 n + 1]);

%t Table[a[n], {n, 0, 14}] (* _Peter Luschny_, Mar 01 2018 *)

%o (PARI) { for (n=0, 100, write("b061162.txt", n, " ", (6*n)!*n!/((3*n)!*(2*n)!^2)) ) } \\ _Harry J. Smith_, Jul 18 2009

%Y Cf. A061163, A061164, A007297, A091527, A262732.

%Y See also A091527, A211419, A211420, A211421.

%K easy,nonn,changed

%O 0,2

%A _Richard Stanley_, Apr 17 2001