Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jan 15 2024 08:55:03
%S 1,2,3,7,29,59,709,2837,22697,590123,1180247,9441977,169955587,
%T 2719289393,5438578787,32631472723,391577672677,1566310690709,
%U 50121942102689,1503658263080671,9021949578484027,360877983139361081,21652678988361664861,476358937743956626943,5716307252927479523317
%N a(0) = 1; for n>0, a(n) = smallest prime of the form k*a(n-1) + 1.
%C Dirichlet proved that for every prime p there exists at least one prime of the form k*p + 1, hence the sequence is infinite.
%H T. D. Noe, <a href="/A061092/b061092.txt">Table of n, a(n) for n = 0..100</a>
%H Lejeune-Dirichlet, <a href="http://arxiv.org/abs/0808.1408">There are infinitely many prime numbers in all arithmetic progressions with first term and difference coprime</a>, arXiv:0808.1408 [math.HO], 2008-2014 (original 1837, translated from German).
%H Amarnath Murthy, <a href="http://fs.gallup.unm.edu/SNJ11.pdf">On the divisors of Smarandache Unary Sequence</a>. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000, page 184.
%e 59 = 2*29 + 1; 709 = 12*59 + 1.
%t a[1] = 2; a[n_] := a[n] = Block[{k = 1, p = a[n - 1]}, While[ !PrimeQ[k*p + 1], k++ ]; k*p + 1]; Table[ a[n], {n, 21}] (* _Robert G. Wilson v_, Nov 26 2004 *)
%o (PARI) for (n=0, 100, if (n>0, k=1; while (!isprime(k*a + 1), k++); a=k*a + 1, a=1); write("b061092.txt", n, " ", a)) \\ _Harry J. Smith_, Jul 17 2009
%Y Corresponding values of k are in A121799.
%K nonn
%O 0,2
%A _Amarnath Murthy_, Apr 19 2001
%E More terms from _Patrick De Geest_, May 29 2001
%E Edited by _Charles R Greathouse IV_, Aug 02 2010