Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 21 2015 19:27:48
%S 1,3,31,416,7316,158592,4079832,121418880,4102640064,155127605760,
%T 6488944560000,297483185986560,14831664692912640,798949604318423040,
%U 46240823333993702400,2861614126455843225600,188557593322666066329600
%N a(n) = (n+1)!*Sum_{k=0..n} C(2k, k)*B(n-k), where B(n) is n-th Bernoulli number.
%C The 1st negative term is a(64) = -1461516... (130 digits).
%C It appears that for n >= 64, a(n) < 0 if and only if n == 0 or 1 (mod 4). - _Robert Israel_, Sep 21 2015
%H Harry J. Smith and Robert Israel, <a href="/A061053/b061053.txt">Table of n, a(n) for n = 0..280</a> (n = 0..100 from Harry J. Smith)
%e a(3) = 4! *(binomial(0,0) B_3 + binomial(2,1) B_2 + binomial(4,2) B_1 + binomial(6,3) B_0) = 24 *(1 *0 + 2 *(1/6) + 6 *(-1/2) + 20 *1) = 416.
%p f:= n -> (n+1)!*add(binomial(2*k,k)*bernoulli(n-k),k=0..n):
%p map(f, [$0..100]); # _Robert Israel_, Sep 21 2015
%t Table[(n + 1)! Sum[Binomial[2 k, k] BernoulliB[n - k], {k, 0, n}], {n,
%t 0, 16}] (* _Michael De Vlieger_, Sep 21 2015 *)
%o (PARI) { default(realprecision, 500); for (n=0, 100, a=(n + 1)!*sum(k=0, n, binomial(2*k, k)*bernreal(n - k)); write("b061053.txt", n, " ", round(a)) ) } \\ _Harry J. Smith_, Jul 17 2009
%K easy,sign
%O 0,2
%A _Leroy Quet_, May 26 2001