login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(6*n*sqrt(n)/Pi^2).
1

%I #20 May 03 2024 20:46:52

%S 0,0,1,3,4,6,8,11,13,16,19,22,25,28,31,35,38,42,46,50,54,58,62,67,71,

%T 75,80,85,90,94,99,104,110,115,120,125,131,136,142,148,153,159,165,

%U 171,177,183,189,195,202,208,214,221,227,234,241,247,254,261,268,275,282

%N a(n) = floor(6*n*sqrt(n)/Pi^2).

%C Conjecture: the sum of the divisors of n is less than a(n) for n exceeding 12. - _Robert G. Wilson v_, May 14 2014

%H Harry J. Smith, <a href="/A060903/b060903.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A000203(n) + A058208(n).

%F a(n) = floor(6*n^(3/2)/Pi^2).

%t f[n_] := Floor[6 n^(3/2)/Pi^2]; Array[f, 61, 0] (* _Robert G. Wilson v_, May 14 2014 *)

%o (PARI) { default(realprecision, 100); t=Pi^2/6; for (n=0, 1000, write("b060903.txt", n, " ", n*sqrt(n)\t); ) } \\ _Harry J. Smith_, Jul 14 2009

%Y Cf. A000093, A000203, A000796, A058208.

%K nonn

%O 0,4

%A _Henry Bottomley_, May 05 2001