Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Dec 23 2024 13:06:08
%S 1,1,11,61,205,521,1111,2101,3641,5905,9091,13421,19141,26521,35855,
%T 47461,61681,78881,99451,123805,152381,185641,224071,268181,318505,
%U 375601,440051,512461,593461,683705,783871,894661,1016801,1151041,1298155,1458941,1634221
%N a(n) = n^4 - n^3 + n^2 - n + 1.
%C a(n) = Phi_10(n), where Phi_k is the k-th cyclotomic polynomial.
%C Number of walks of length 5 between any two distinct nodes of the complete graph K_{n+1} (n>=1). Example: a(1)=1 because in the complete graph AB we have only one walk of length 5 between A and B: ABABAB. - _Emeric Deutsch_, Apr 01 2004
%C t^4-t^3+t^2-t+1 is the Alexander polynomial (with negative powers cleared) of the cinquefoil knot (torus knot T(5,2)). The associated Seifert matrix S is [[ -1, -1, 0, -1], [ 0, -1, 0, 0], [ -1, -1, -1, -1], [ 0, -1, 0, -1]]. a(n) = det(transpose(S)-n*S). Cf. A084849. - _Peter Bala_, Mar 14 2012
%C For odd n, a(n) * (n+1) / 2 also represents the first integer in a sum of n^5 consecutive integers that equals n^10. - _Patrick J. McNab_, Dec 26 2016
%H Ray Chandler, <a href="/A060884/b060884.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from Harry J. Smith)
%H <a href="/index/Cy#CyclotomicPolynomialsValuesAtX">Index to values of cyclotomic polynomials of integer argument</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F G.f.: (1-4*x+16*x^2+6*x^3+5*x^4)/(1-x)^5. - _Emeric Deutsch_, Apr 01 2004
%F E.g.f.: exp(x)*(1 + 5*x^2 + 5*x^3 + x^4). - _Stefano Spezia_, Apr 22 2023
%p A060884 := proc(n)
%p numtheory[cyclotomic](10,n) ;
%p end proc:
%p seq(A060884(n),n=0..20) ; # _R. J. Mathar_, Feb 07 2014
%t Table[1 + Fold[(-1)^(#2)*n^(#2) + #1 &, Range[0, 4]], {n, 0, 33}] (* or *)
%t CoefficientList[Series[(1 - 4 x + 16 x^2 + 6 x^3 + 5 x^4)/(1 - x)^5, {x, 0, 33}], x] (* _Michael De Vlieger_, Dec 26 2016 *)
%t Table[n^4-n^3+n^2-n+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,1,11,61,205},40] (* _Harvey P. Dale_, Sep 08 2018 *)
%o (PARI) a(n) = { n^4 - n^3 + n^2 - n + 1 } \\ _Harry J. Smith_, Jul 13 2009
%Y Cf. A084849, A246392, A259257.
%K nonn,easy,changed
%O 0,3
%A _N. J. A. Sloane_, May 05 2001