login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array of the coefficients A(n,k) in the expansion of Product_{i>=1} 1/(1-x^i)^n = Sum_{k>=0} A(n,k)*x^k, n >= 1, k >= 0.
5

%I #47 Sep 15 2018 02:08:51

%S 1,1,1,1,2,2,1,3,5,3,1,4,9,10,5,1,5,14,22,20,7,1,6,20,40,51,36,11,1,7,

%T 27,65,105,108,65,15,1,8,35,98,190,252,221,110,22,1,9,44,140,315,506,

%U 574,429,185,30,1,10,54,192,490,918,1265,1240,810,300,42,1,11,65,255

%N Array of the coefficients A(n,k) in the expansion of Product_{i>=1} 1/(1-x^i)^n = Sum_{k>=0} A(n,k)*x^k, n >= 1, k >= 0.

%C Table read by antidiagonals: entry (n,k) gives number of partitions of n objects into parts of k kinds. - _Franklin T. Adams-Watters_, Dec 28 2006

%F G.f. A(n;x) for n-th row satisfies A(n;x) = Sum_{k=1..n} A000041(k-1)*A(n-k;x)*x^(k-1), A(0;x) = 1. - _Vladeta Jovovic_, Jan 02 2004

%e Table (row k, k >= 0: number of partitions of n, n >= 0, into parts of k kinds):

%e Array begins:

%e =======================================================================

%e k\n| 0 1 2 3 4 5 6 7 8 9 10

%e ---|-------------------------------------------------------------------

%e 1 | 1 1 2 3 5 7 11 15 22 30 42

%e 2 | 1 2 5 10 20 36 65 110 185 300 481

%e 3 | 1 3 9 22 51 108 221 429 810 1479 2640

%e 4 | 1 4 14 40 105 252 574 1240 2580 5180 10108

%e 5 | 1 5 20 65 190 506 1265 2990 6765 14725 31027

%e 6 | 1 6 27 98 315 918 2492 6372 15525 36280 81816

%e 7 | 1 7 35 140 490 1547 4522 12405 32305 80465 192899

%e 8 | 1 8 44 192 726 2464 7704 22528 62337 164560 417140

%e 9 | 1 9 54 255 1035 3753 12483 38709 113265 315445 841842

%e 10 | 1 10 65 330 1430 5512 19415 63570 195910 573430 1605340

%e 11 | 1 11 77 418 1925 7854 29183 100529 325193 997150 2919411

%e ...

%e Triangle (row n, n >= 0: number of partitions of n into parts of n - k kinds, 0 <= k <= n) (antidiagonals of above table) (parenthesized last term on each row, which would correspond to row k = 0 in above table)

%e Triangle begins: (column k: n - k kinds of parts)

%e ===================================

%e n\k| 0 1 2 3 4 5 6 7

%e ---+-------------------------------

%e 0 |(1)

%e 1 | 1, (0)

%e 2 | 1, 1, (0)

%e 3 | 1, 2, 2, (0)

%e 4 | 1, 3, 5, 3, (0)

%e 5 | 1, 4, 9, 10, 5, (0)

%e 6 | 1, 5, 14, 22, 20, 7, (0)

%e 7 | 1, 6, 20, 40, 51, 36, 11, (0)

%e ...

%t t[n_, k_] := CoefficientList[ Series[ Product[1/(1 - x^i)^n, {i, k}], {x, 0, k}], x][[k]]; (* _Robert G. Wilson v_, Aug 08 2018 *)

%t t[n_, k_]; = IntegerPartitions[n, {k}]; Table[ t[n - k + 1, k], {n, 12}, {k, n}] // Flatten (* _Robert G. Wilson v_, Aug 08 2018 *)

%Y Cf. A067687 (table antidiagonal sums, triangle row sums).

%Y Rows (table), diagonals (triangle): A000041, A000712, A000716, A023003-A023021, A006922.

%Y Columns (table, triangle): A000012, A001477, A000096, A006503, A006504.

%K tabl,nonn,easy

%O 1,5

%A Bo T. Ahlander (ahlboa(AT)isk.kth.se), May 03 2001

%E More terms from _Vladeta Jovovic_, Jan 02 2004