Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #114 Nov 26 2023 13:34:55
%S 0,1,2,4,5,7,9,11,12,15,17,19,21,23,25,29,30,32,35,37,39,43,45,47,49,
%T 52,54,58,60,62,66,68,69,73,75,79,82,84,86,90,92,94,98,100,102,108,
%U 110,112,114,117,120,124,126,128,132,136,138,142,144,146,150,152,154,160
%N a(n) = Sum_{k=1..n} (number of odd divisors of k) (cf. A001227).
%C The old definition was "Number of sums less than or equal to n of sequences of consecutive positive integers (including sequences of length 1)."
%C In other words, a(n) is also the total number of partitions of all positive integers <= n into consecutive parts, n >= 1. - _Omar E. Pol_, Dec 03 2020
%C Starting with 1 = row sums of triangle A168508. - _Gary W. Adamson_, Nov 27 2009
%C The subsequence of primes in this sequence begins, through a(100): 2, 5, 7, 11, 17, 19, 23, 29, 37, 43, 47, 73, 79, 173, 181, 223, 227, 229, 233, 263. - _Jonathan Vos Post_, Feb 13 2010
%C Apart from the initial zero, a(n) is also the total number of subparts of the symmetric representations of sigma of all positive integers <= n. Hence a(n) is also the total number of subparts in the terraces of the stepped pyramid with n levels described in A245092. For more information see A279387 and A237593. - _Omar E. Pol_, Dec 17 2016
%C a(n) is also the total number of partitions of all positive integers <= n into an odd number of equal parts. - _Omar E. Pol_, May 14 2017
%C Zero together with the row sums of A235791. - _Omar E. Pol_, Dec 18 2020
%H Harry J. Smith, <a href="/A060831/b060831.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{i=1..n} A001227(i).
%F a(n) = a(n-1) + A001227(n).
%F a(n) = n + floor(n/3) + floor(n/5) + floor(n/7) + floor(n/9) + ...
%F a(n) = A006218(n) - A006218(floor(n/2)).
%F a(n) = Sum_{i=1..ceiling(n/2)} A000005(n-i+1). - _Wesley Ivan Hurt_, Sep 30 2013
%F a(n) = Sum_{i=floor((n+2)/2)..n} A000005(i). - _N. J. A. Sloane_, Dec 06 2020, modified by _Xiaohan Zhang_, Nov 07 2022
%F G.f.: (1/(1 - x))*Sum_{k>=1} x^k/(1 - x^(2*k)). - _Ilya Gutkovskiy_, Dec 23 2016
%F a(n) ~ n*(log(2*n) + 2*gamma - 1) / 2, where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Jan 30 2019
%e E.g., for a(7), we consider the odd divisors of 1,2,3,4,5,6,7, which gives 1,1,2,1,2,2,2 = 11. - _Jon Perry_, Mar 22 2004
%e Example illustrating the old definition: a(7) = 11 since 1, 2, 3, 4, 5, 6, 7, 1+2, 2+3, 3+4, 1+2+3 are all 7 or less.
%e From _Omar E. Pol_, Dec 02 2020: (Start)
%e Illustration of initial terms:
%e Diagram
%e n a(n)
%e 0 0 _|
%e 1 1 _|1|
%e 2 2 _|1 _|
%e 3 4 _|1 |1|
%e 4 5 _|1 _| |
%e 5 7 _|1 |1 _|
%e 6 9 _|1 _| |1|
%e 7 11 _|1 |1 | |
%e 8 12 _|1 _| _| |
%e 9 15 _|1 |1 |1 _|
%e 10 17 _|1 _| | |1|
%e 11 19 _|1 |1 _| | |
%e 12 21 |1 | |1 | |
%e ...
%e a(n) is also the total number of horizontal line segments in the first n levels of the diagram. For n = 5 there are seven horizontal line segments, so a(5) = 7. Cf. A237048, A286001. (End)
%e From _Omar E. Pol_, Dec 19 2020: (Start)
%e a(n) is also the number of regions in the diagram of the symmetries of sigma after n stages, including the subparts, as shown below (Cf. A279387):
%e . _ _ _ _
%e . _ _ _ |_ _ _ |_
%e . _ _ _ |_ _ _| |_ _ _| |_|_
%e . _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ |
%e . _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | |
%e . _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
%e . |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
%e .
%e . 0 1 2 4 5 7 9
%e (End)
%p A060831 := proc(n)
%p add(numtheory[tau](n-i+1),i=1..ceil(n/2)) ;
%p end proc:
%p seq(A060831(n),n=0..100) ; # _Wesley Ivan Hurt_, Oct 02 2013
%t f[n_] := Sum[ -(-1^k)Floor[n/(2k - 1)], {k, n}]; Table[ f[n], {n, 0, 65}] (* _Robert G. Wilson v_, Jun 16 2006 *)
%t Accumulate[Table[Count[Divisors[n],_?OddQ],{n,0,70}]] (* _Harvey P. Dale_, Nov 26 2023 *)
%o (PARI) a(n)=local(c);c=0;for(i=1,n,c+=sumdiv(i,X,X%2));c
%o (PARI) for (n=0, 1000, s=n; d=3; while (n>=d, s+=n\d; d+=2); write("b060831.txt", n, " ", s); ) \\ _Harry J. Smith_, Jul 12 2009
%o (PARI) a(n)=my(n2=n\2); sum(k=1, sqrtint(n), n\k)*2-sqrtint(n)^2-sum(k=1, sqrtint(n2), n2\k)*2+sqrtint(n2)^2 \\ _Charles R Greathouse IV_, Jun 18 2015
%o (Python)
%o def A060831(n): return n+sum(n//i for i in range(3,n+1,2)) # _Chai Wah Wu_, Jul 16 2022
%o (Python)
%o from math import isqrt
%o def A060831(n): return ((t:=isqrt(m:=n>>1))+(s:=isqrt(n)))*(t-s)+(sum(n//k for k in range(1,s+1))-sum(m//k for k in range(1,t+1))<<1) # _Chai Wah Wu_, Oct 23 2023
%Y Zero together with the partial sums of A001227.
%Y Cf. A000005, A001620, A006218, A168508, A235791, A236104, A237048, A237590, A237593, A245092, A279387, A286001.
%K nonn
%O 0,3
%A _Henry Bottomley_, May 01 2001
%E Definition simplified by _N. J. A. Sloane_, Dec 05 2020