login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4^(n^2).
10

%I #28 Jun 29 2021 16:53:40

%S 1,4,256,262144,4294967296,1125899906842624,4722366482869645213696,

%T 316912650057057350374175801344,

%U 340282366920938463463374607431768211456,5846006549323611672814739330865132078623730171904,1606938044258990275541962092341162602522202993782792835301376

%N a(n) = 4^(n^2).

%C Number of n X n matrices over GF(4).

%C a(n) = k^(n^2) with k = 2, 3, 4,... counts n X n matrices over GF(k). - Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 14 2002

%H Harry J. Smith, <a href="/A060757/b060757.txt">Table of n, a(n) for n = 0..40</a>

%F a(n) = A118185(2n,n). - _Alois P. Heinz_, Jun 29 2021

%t f[n_]:=4^(n^2);f[Range[0,14]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 19 2011 *)

%o (PARI) a(n)={4^(n^2)} \\ _Harry J. Smith_, Jul 10 2009

%o (Maxima) A060757(n):=4^(n^2)$

%o makelist(A060757(n),n,0,10); /* _Martin Ettl_, Nov 08 2012 */

%Y Cf. A060761.

%Y Cf. A060722.

%Y Cf. A118185.

%K nonn

%O 0,2

%A Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 23 2001

%E More terms from _Philippe Deléham_, Nov 19 2007