login
Pack n integer-sided rectangles into the smallest possible square so that no sides of the rectangle are the same. Sequence gives the side of the smallest square.
1

%I #25 Dec 17 2022 14:17:11

%S 2,4,6,8,11,14,18,21,24,28,32,37,41,46,51,55,60

%N Pack n integer-sided rectangles into the smallest possible square so that no sides of the rectangle are the same. Sequence gives the side of the smallest square.

%C Those terms that are > ceiling(sqrt(n*(n+1)*(2n+1)/3)) are only the best currently known solutions. - Larry Reeves (larryr(AT)acm.org), Apr 19 2001

%C a(1)-a(17) except a(15) are known to be the smallest possible. - _Sean A. Irvine_, Dec 13 2022

%H E. J. Friedman, <a href="https://erich-friedman.github.io/mathmagic/0899.html">Math. Magic: August 1999, Question #2</a>

%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a060/A060655.java">Java program</a> (github)

%H Sean A. Irvine, <a href="/A060655/a060655.dat.txt">Solution for a(16)</a>

%H Sean A. Irvine, <a href="/A060655/a060655.out.txt">Solution for a(17)</a>

%F a(n) >= sqrt(n*(n+1)*(2n+1)/3).

%K nonn,hard,more

%O 1,1

%A _Jason Earls_, Apr 18 2001

%E Data updated from values at Friedman link by _Sean A. Irvine_, Dec 05 2022

%E a(16) from _Sean A. Irvine_, Dec 13 2022

%E a(17) from _Sean A. Irvine_, Dec 17 2022