login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060613
Number of n X n {-1,0,1} matrices with no zero rows.
7
2, 64, 17576, 40960000, 829997587232, 148863517207035904, 238534446168822298080896, 3429499272008000182681600000000, 443223773846454955204927262062339154432
OFFSET
1,1
LINKS
FORMULA
a(n) = (3^n - 1)^n.
E.g.f.: Sum_{n>=0} 3^(n^2) * exp(-3^n*x) * x^n/n!. - Paul D. Hanna, Dec 26 2011
O.g.f.: Sum_{n>=0} 3^(n^2) * x^n/(1+3^n*x)^(n+1). - Paul D. Hanna, Dec 26 2011
PROG
(PARI) a(n)={(3^n - 1)^n} \\ Harry J. Smith, Jul 08 2009
(PARI) {a(n, q=3, m=1, b=-1)=(m*q^n + b)^n} \\ Paul D. Hanna, Dec 26 2011
(PARI) /* E.g.f. series identity: */
{a(n, q=3, m=1, b=-1)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)} \\ Paul D. Hanna, Dec 26 2011
(PARI) /* O.g.f. series identity: */
{a(n, q=3, m=1, b=-1)=polcoeff(sum(k=0, n, m^k*q^(k^2)*x^k/(1-b*q^k*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Dec 26 2011
CROSSREFS
Sequence in context: A263185 A155957 A085535 * A139772 A348214 A092238
KEYWORD
nonn
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
EXTENSIONS
More terms from Harry J. Smith, Jul 08 2009
STATUS
approved