login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060593
a(n) is the number of ways that a cycle of length 2n+1 in the symmetric group S_(2n+1) can be decomposed as the product of two cycles of length 2n+1.
11
1, 1, 8, 180, 8064, 604800, 68428800, 10897286400, 2324754432000, 640237370572800, 221172909834240000, 93666727314800640000, 47726800133326110720000, 28806532937614688256000000, 20325889640780924033433600000, 16578303738261941164769280000000
OFFSET
0,3
COMMENTS
The sequence deals only with S_m for odd m because for even m the number of representations of an m-cycle in S_m as a product of two m-cycles is zero.
a(n) = product of first 2n-1 numbers divided by their sum. E.g., a(3) = (1*2*3*4*5)/(1+2+3+4+5) = 120/15 = 8. - Amarnath Murthy, Jun 03 2004
a(n) is also the number of permutations in Sym(2n) whose "cycle graph" (or "breakpoint graph") contains exactly one alternating cycle, for n>=1 (see Doignon and Labarre). - Anthony Labarre, Jun 19 2007
LINKS
G. Boccara, Nombre de représentations d'une permutation comme produit de deux cycles de longueurs données, Discrete Math., Vol. 29, No. 2 (1980), pp. 105-134.
Jean-Paul Doignon and Anthony Labarre, On Hultman Numbers, J. Integer Seq., Vol. 10 (2007), Article 07.6.2, 13 pages.
K. A. Penson and J.-M. Sixdeniers, Integral Representations of Catalan and Related Numbers, J. Integer Sequences, Vol. 4 (2001), Article 01.2.5.
Karol A. Penson and Allan I. Solomon, Coherent states from combinatorial sequences, arXiv:quant-ph/0111151, 2001.
FORMULA
a(n) = (2n)! / (n+1).
Integral representation as n-th moment of a positive function on positive half-axis, in Maple notation: a(n)=int(x^n*(exp(-sqrt(x))/sqrt(x)+Ei(-sqrt(x))), x=0..infinity), n=0, 1, 2, ..., where Ei(y) is the exponential integral. This representation is unique. - Karol A. Penson, Aug 27 2001
a(n) = n!^2*binomial(2*n,n)/(n+1). - Zerinvary Lajos, Jun 06 2006
a(n) = A090586(2*n + 1). - Gregory Gerard Wojnar, Jun 10 2021
From Amiram Eldar, Feb 08 2022: (Start)
Sum_{n>=0} 1/a(n) = cosh(1) + sinh(1)/2.
Sum_{n>=0} (-1)^n/a(n) = cos(1) - sin(1)/2. (End)
From Wolfdieter Lang, Feb 02 2024: (Start)
O.g.f.: hypergeometric([1,1,1,1/2],[2],4*x).
E.g.f.: hypergeometric([1,1,1/2],[2],4*x). (End)
a(n) = A177267(2n+1,n). - Alois P. Heinz, Feb 16 2024
EXAMPLE
a(1) = 1 because in S_3 the only way to write the cycle (123) as a product of two 3-cycles is: (123) = (132)(132).
MAPLE
for n from 0 to 25 do printf(`%d, `, (2*n)!/(n+1)) od:
MATHEMATICA
Table[(2*n)!/(n + 1), {n, 0, 13}] (* Amiram Eldar, Feb 08 2022 *)
PROG
(PARI) { for (n=0, 100, write("b060593.txt", n, " ", (2*n)! / (n + 1)); ) } \\ Harry J. Smith, Jul 07 2009
CROSSREFS
Sequence in context: A317486 A360340 A374890 * A130775 A332118 A261825
KEYWORD
nonn,easy
AUTHOR
Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
EXTENSIONS
More terms from James A. Sellers, Apr 13 2001
STATUS
approved