login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of homeomorphically irreducible general graphs on 6 labeled node and with n edges.
6

%I #7 May 10 2013 12:44:44

%S 1,15,81,441,2151,9957,43122,174162,666267,2403987,8183601,26281065,

%T 79660856,228180456,618992466,1595081266,3918506466,9211519476,

%U 20797923546,45258309066,95225448306,194283668576,385361919996

%N Number of homeomorphically irreducible general graphs on 6 labeled node and with n edges.

%C A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

%H V. Jovovic, <a href="/A060576/a060576.pdf">Generating functions for homeomorphically irreducible general graphs on n labeled nodes</a>

%H V. Jovovic, <a href="/A060576/a060576_rec.pdf">Recurrences for the numbers of homeomorphically irreducible general graphs on m labeled nodes and n edges</a>

%F G.f.: (6*x^30 - 30*x^29 - 90*x^28 + 898*x^27 - 5703*x^26 + 67854*x^25 - 552925*x^24 + 2795730*x^23 - 9663357*x^22 + 24476292*x^21 - 47540991*x^20 + 73129860*x^19 - 91373250*x^18 + 94675608*x^17 - 82549758*x^16 + 60794764*x^15 - 37293240*x^14 + 18277860*x^13 - 6426742*x^12 + 945252*x^11 + 680499*x^10 - 726250*x^9 + 423825*x^8 - 187536*x^7 + 66981*x^6 - 19092*x^5 + 4065*x^4 - 560*x^3 + 24*x^2 + 6*x - 1)/(x - 1)^21. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.

%Y Cf. A003514, A060516, A060533-A060537, A060576-A060581.

%K easy,nonn

%O 0,2

%A _Vladeta Jovovic_, Apr 03 2001