login
A060564
Number of elliptic curves (up to isogeny) of conductor n.
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 2, 3, 2, 0, 0, 1, 1, 1, 1, 1, 3, 1, 0, 1, 1, 0, 1, 1, 0, 3, 1, 3, 1, 1, 2, 0, 1, 1, 2, 1, 0, 0, 1, 2, 3, 2, 2, 0, 1, 0, 2, 0, 1, 4
OFFSET
1,26
COMMENTS
By the modularity of elliptic curves over Q (proved by Breuil-Conrad-Diamond-Taylor), a(n) is equivalently the number of integral normalized weight 2 newforms for Gamma_0(n). - Robin Visser, Nov 04 2024
LINKS
J. E. Cremona, Elliptic Curve Data
F. Richman, Elliptic curves [broken link]
A. L. Robledo, PlanetMath.org, The Arithmetic of Elliptic Curves [broken link]
E. Savaş, T. A. Schmidt, and Ç. K. Koç, Generating Elliptic Curves of Prime Order. In: Koç, Ç.K., Naccache, D., Paar, C. (eds) Cryptographic Hardware and Embedded Systems — CHES 2001. CHES 2001. Lecture Notes in Computer Science, vol 2162. Springer, Berlin, Heidelberg.
Eric Weisstein's World of Mathematics, Elliptic Curve
EXAMPLE
a(11) = 1, as there is exactly one isogeny class of elliptic curves over Q of conductor 11, represented by E : y^2 + y = x^3 - x^2. - Robin Visser, Nov 04 2024
PROG
(Sage) # Uses Cremona's database of elliptic curves (works for all n < 500000)
def a(n):
return CremonaDatabase().number_of_isogeny_classes(n) # Robin Visser, Nov 04 2024
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, Apr 12 2001
STATUS
approved