login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let n = 2^e_2 * 3^e_3 * 5^e_5 * ... be the prime factorization of n; sequence gives n such that 1 + max{e_2, e_3, ...} is nonprime.
10

%I #20 Oct 18 2020 03:07:51

%S 1,8,24,27,32,40,54,56,72,88,96,104,108,120,125,128,135,136,152,160,

%T 168,184,189,200,216,224,232,243,248,250,256,264,270,280,288,296,297,

%U 312,328,343,344,351,352,360,375,376,378,384,392,408,416,424,440,456,459,472,480

%N Let n = 2^e_2 * 3^e_3 * 5^e_5 * ... be the prime factorization of n; sequence gives n such that 1 + max{e_2, e_3, ...} is nonprime.

%C The old entry with this sequence number was a duplicate of A005171.

%C The asymptotic density of this sequence is Sum_{c composite} (1/zeta(c) - 1/zeta(c-1)) = 0.1182437806... - _Amiram Eldar_, Oct 18 2020

%H Charles R Greathouse IV, <a href="/A060476/b060476.txt">Table of n, a(n) for n = 1..10000</a>

%F From _Reinhard Zumkeller_, Nov 30 2015: (Start)

%F A010051(A051903(a(n)+1)) = 1.

%F a(A055229(n)) > 1 for n > 1. (End)

%t Join[{1}, Select[Range[500], !PrimeQ[1+Max[FactorInteger[#][[All, 2]]]]&]] (* _Jean-François Alcover_, Aug 02 2018 *)

%o (PARI) isA060476(n) = if(n<2,1,!isprime(vecmax(factor(n)[,2])+1))

%o (Haskell)

%o a060476 n = a060476_list !! (n-1)

%o a060476_list = filter ((== 0) . a010051' . (+ 1) . a051903) [1..]

%o -- _Reinhard Zumkeller_, Nov 30 2015

%Y Cf. A096432, A074661.

%Y Cf. A010051, A051903, A055229.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Sep 18 2008