login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060465 Value of x of the solution to x^3 + y^3 + z^3 = A060464(n) (numbers not 4 or 5 mod 9) with smallest |z| and smallest |y|, 0 <= |x| <= |y| <= |z|. 4

%I

%S 0,0,0,1,-1,0,0,0,1,-2,7,-1,-511,1,-1,0,1,-11,-2901096694,-1,0,0,0,1,

%T -283059965,-2736111468807040,-1,0,1,0,1,117367

%N Value of x of the solution to x^3 + y^3 + z^3 = A060464(n) (numbers not 4 or 5 mod 9) with smallest |z| and smallest |y|, 0 <= |x| <= |y| <= |z|.

%C Indexed by A060464.

%C Only primitive solutions where gcd(x,y,z) does not divide n are considered.

%C From the solution A060464(24) = 30 = -283059965^3 - 2218888517^3 + 2220422932^3 (smallest possible magnitudes according to A. Bogomolny), one has a(24) = -283059965. A solution to A060464(25) = 33 remains to be found. Other values for larger n can be found in the first column of the table on Hisanori Mishima's web page. - _M. F. Hasler_, Nov 10 2015

%D R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, New York, 2004, Section D5, 231-234.

%H D. J. Bernstein, <a href="http://cr.yp.to/threecubes.html">Three cubes</a>

%H A. Bogomolny, <a href="http://www.cut-the-knot.org/arithmetic/algebra/FinikyDiophantineEquations.shtml">Finicky Diophantine Equations</a> on cut-the-knot.org, accessed Nov. 10, 2015

%H B. Conn, L. Vaserstein, <a href="http://www.ams.org/bookstore?fn=20&amp;arg1=conmseries&amp;ikey=CONM-166">On sums of three integral cubes</a>, Contemp. Math 166 (1994) <a href="http://www.ams.org/mathscinet-getitem?mr=1284068">MR1284068</a>

%H V. L. Gardiner, R. B. Lazarus, P. R. Stein, <a href="http://dx.doi.org/10.1090/S0025-5718-1964-0175843-9">Solutions of the diophantine equation x^3+y^3=z^3-d</a>, Math. Comp. 18 (1964) 408-413.

%H D.R. Heath-Brown, W.M. Lioen and H.J.J. te Riele <a href="http://euler.free.fr/docs/HLR93.pdf"> on Solving the Diophantine Equation x3 + y3 + z3 = k on a Vector Computer</a>

%H J. C. P. Miller, M. F. C. Woollett, <a href="http://dx.doi.org/10.1112/jlms/s1-30.1.101">Solutions of the Diophantine Equation x^3+y^3+z^3=k</a>, J. Lond. Math. Soc. 30 (1) (1955) 101-110

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/math04/matb0100.htm">About n=x^3+y^3+z^3</a>

%e For n=16 the smallest solution is 16 = (-511)^3 + (-1609)^3 + 1626^3, which gives the term -511.

%t (* this program is not convenient for hard cases *) nmax = 29; xmin[_] = 0; xmax[_] = 20; xmin[16] = 500; xmax[16] = 600; xmin[24] = 2901096600; xmax[24] = 2901096700; r[n_, x_] := Reduce[0 <= Abs[x] <= Abs[y] <= Abs[z] && n == x^3 + y^3 + z^3, {y, z}, Integers]; r[n_ /; IntegerQ[n^(1/3)]] := {0, 0, n^(1/3)}; mySort = Sort[#1, Which[Abs[#1[[3]]] <= Abs[#2[[3]]], True, Abs[#1[[3]]] == Abs[#2[[3]]], If[Abs[#1[[2]]] <= Abs[#2[[2]]], True, False], True, False] & ] & ; rep := {x_, y_, z_} /; (x + y == 0 && x > 0) :> {-x, -y, z}; r[n_] := Reap[Do[ sp = r[n, x] /. C[1] -> 1; If[sp =!= False, xyz = {x, y, z} /. {ToRules[sp]} /. rep; If[GCD @@ Flatten[{n, xyz}] == 1, Sow[xyz]]]; sn = r[n, -x] /. C[1] -> 1; If[sn =!= False, xyz = {-x, y, z} /. {ToRules[sn]} /. rep; If[GCD @@ Flatten[{n, xyz}] == 1, Sow[xyz]]], {x, xmin[n], xmax[n]}]][[2, 1]] // Flatten[#, 1] & // mySort // First; A060464 = Select[Range[0, nmax], Mod[#, 9] != 4 && Mod[#, 9] != 5 &]; A060465 = Table[xyz = r[n]; Print[ " n = ", n, " {x,y,z} = ", xyz]; xyz[[1]], {n, A060464}] (* _Jean-Fran├žois Alcover_, Jul 10 2012 *)

%Y Cf. A060466, A060467, A173515.

%K sign,nice,hard,more

%O 0,10

%A _N. J. A. Sloane_, Apr 10 2001

%E Edited and a(24) added by _M. F. Hasler_, Nov 10 2015

%E a(25) from Tim Browning and further terms added by _Charlie Neder_, Mar 09 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 03:00 EST 2019. Contains 329836 sequences. (Running on oeis4.)