Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Aug 02 2024 12:04:43
%S 1,3,5,7,8,9,11,13,14,15,17,19,20,21,23,24,25,26,27,29,31,32,33,34,35,
%T 37,38,39,41,43,44,45,47,48,49,50,51,53,54,55,56,57,59,61,62,63,64,65,
%U 67,68,69,71,73,74,75,76,77,79,80,81,83,84,85,86,87,89,90,91,92,93,94
%N Integers k such that k! is divisible by k*(k+1)/2.
%C k! / (k-th triangular number) is an integer.
%C a(n) = A072668(n) for n>0.
%C From _Bernard Schott_, Dec 11 2020: (Start)
%C Numbers k such that Sum_{j=1..k} j divides Product_{j=1..k} j.
%C k is a term iff k != p-1 with p is an odd prime (see De Koninck & Mercier reference).
%C The ratios obtained a(n)!/T(a(n)) = A108552(n). (End)
%D Jean-Marie De Koninck & Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 181 pp. 31 and 163, Ellipses, Paris, 2004.
%D Joseph D. E. Konhauser et al., Which Way Did The Bicycle Go?, Problem 98, pp. 29; 145-146, MAA Washington DC, 1996.
%H Harry J. Smith, <a href="/A060462/b060462.txt">Table of n, a(n) for n = 1..2001</a> [offset adapted by _Georg Fischer_, Jan 04 2021]
%e 5 is a term because 5*4*3*2*1 = 120 is divisible by 5 + 4 + 3 + 2 + 1 = 15.
%p for n from 1 to 300 do if n! mod (n*(n+1)/2) = 0 then printf(`%d,`,n) fi:od:
%t Select[Range[94], Mod[#!, #*(# + 1)/2] == 0 &] (* _Jayanta Basu_, Apr 24 2013 *)
%o (PARI) { f=1; t=0; n=-1; for (m=1, 4000, f*=m; t+=m; if (f%t==0, write("b060462.txt", n++, " ", m)); if (n==2000, break); ) } \\ _Harry J. Smith_, Jul 05 2009
%o (Python)
%o from sympy import composite
%o def A060462(n): return composite(n-1)-1 if n>1 else 1 # _Chai Wah Wu_, Aug 02 2024
%Y Cf. A000142, A000217, A072668, A108552.
%K nonn
%O 1,2
%A _Michel ten Voorde_, Apr 09 2001
%E Corrected and extended by _Henry Bottomley_ and _James A. Sellers_, Apr 11 2001
%E Offset corrected by _Alois P. Heinz_, Dec 11 2020