login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of alpha(2) = Sum_{i>0} prime(i)*2^(-i^2).
0

%I #6 May 25 2018 08:28:23

%S 1,1,9,7,3,7,2,7,6,4,5,3,8,1,8,8,8,6,1,7,1,3,4,7,7,9,5,4,2,0,5,3,7,8,

%T 1,9,7,8,1,9,0,2,8,2,1,3,9,9,0,3,7,2,1,9,0,1,3,0,7,7,2,4,5,1,4,0,3,0,

%U 3,6,4,7,6,9,4,0,3,4,2,6,7,9,0,9,2,1,2,7,5,4,9,1,4,4,3,1,4,1,0,4,3,1,1,2,2

%N Decimal expansion of alpha(2) = Sum_{i>0} prime(i)*2^(-i^2).

%C prime(n) = floor(2^(n^2)*alpha(2))-2^(2*n-1)*floor(2^((n-1)^2)*alpha(2)). For n = 6 we have prime(6) = floor(2^36*alpha(2))-2^11*floor(2^25*alpha(2)) = 82282829837-2048*40177163 = 13.

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979, page 345.

%e alpha(2) = 1.19737276453818886171347795420537819781902821399037219013\

%e 077245140303647694034267909212754914431410431122998171762351103482006\

%e 076264716653454638...

%o (PARI) suminf(i=1, prime(i)/2^(i^2)) \\ _Michel Marcus_, May 25 2018

%K nonn,cons

%O 1,3

%A _Vladeta Jovovic_, Apr 03 2001