

A060376


If 10^n can be written as x*y where the digits of x and y are all nonzero, then let a(n) = smallest such x, otherwise a(n) = 1.


1



1, 2, 4, 8, 16, 32, 64, 128, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 262144, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8589934592, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

According to Ogilvy and Anderson, 10^33 is the highest known power of ten that can be expressed as the product of two zerofree factors. "If there is another one, it is greater than 10^5000." p. 89


REFERENCES

C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, p. 89.
Rudolph Ondrejka, Nonzero factors of 10^n, Recreational Mathematics Magazine, no. 6 (1961), p. 59.


LINKS

Table of n, a(n) for n=0..79.


EXAMPLE

10^2 = 4 * 25, so a(2) = 4.


CROSSREFS

Cf. A060391 (for values of y).
Sequence in context: A251761 A133024 A243085 * A047869 A270201 A016025
Adjacent sequences: A060373 A060374 A060375 * A060377 A060378 A060379


KEYWORD

sign,base


AUTHOR

Jason Earls, Apr 02 2001


STATUS

approved



