login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (prime(n) - 1)! + 1.
3

%I #42 Nov 08 2024 07:14:44

%S 2,3,25,721,3628801,479001601,20922789888001,6402373705728001,

%T 1124000727777607680001,304888344611713860501504000001,

%U 265252859812191058636308480000001,371993326789901217467999448150835200000001

%N a(n) = (prime(n) - 1)! + 1.

%C If the prime p is in A055469, that is if p = 2, 7, 11, 29, ... = A055469(j) which is valid for the first, 4th, 5th, 10th,.... entry here with j = 1, 2, 3, ..., then a(n) = A052295[A067186(j)] + 1. - _R. J. Mathar_, Apr 27 2007

%C It follows from Wilson's theorem that a(n) is divisible by the n-th prime. - _Alonso del Arte_, Feb 07 2014

%H Harry J. Smith, <a href="/A060371/b060371.txt">Table of n, a(n) for n = 1..88</a> (adapted by Vincenzo Librandi, Oct 17 2017)

%H Takashi Agoh, Karl Dilcher and Ladislav Skula, <a href="https://doi.org/10.1090/S0025-5718-98-00951-X">Wilson quotients for composite moduli</a>, Math. Comp. 67 (1998), 843-861. MR 98h:11003.

%H C. K. Caldwell, <a href="https://t5k.org/glossary/page.php?sort=WilsonPrime">Wilson Primes</a>

%H R. Crandall, K. Dilcher and C. Pomerance, <a href="http://dx.doi.org/10.1090/S0025-5718-97-00791-6">A search for Wieferich and Wilson primes</a>, Math. Comp., 66 (1997), 433-449. MR 97c:11004.

%t Table[(Prime[n] - 1)! + 1, {n, 12}] (* _Alonso del Arte_, Feb 07 2014 *)

%o (PARI) { n=1; forprime (p=1, 524, write("b060371.txt", n++, " ", (p - 1)! + 1); ) } \\ _Harry J. Smith_, Jul 04 2009

%o (Magma) [Factorial(NthPrime(n)-1)+1: n in [1..15]]; // _Vincenzo Librandi_, Oct 17 2017

%Y Cf. A052295, A055469, A067186.

%Y Subsequence of A038507. - _Michel Marcus_, Oct 17 2017

%K nonn

%O 1,1

%A _Jason Earls_, Apr 01 2001

%E Corrected offset by _Alonso del Arte_, Feb 07 2014