login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060371 a(n) = (prime(n) - 1)! + 1. 3

%I

%S 2,3,25,721,3628801,479001601,20922789888001,6402373705728001,

%T 1124000727777607680001,304888344611713860501504000001,

%U 265252859812191058636308480000001,371993326789901217467999448150835200000001

%N a(n) = (prime(n) - 1)! + 1.

%C If the prime p is in A055469, that is if p = 2, 7, 11, 29, ... = A055469(j) which is valid for the first, 4th, 5th, 10th,.... entry here with j = 1, 2, 3, ..., then a(n) = A052295[A067186(j)] + 1. - _R. J. Mathar_, Apr 27 2007

%C It follows from Wilson's theorem that a(n) is divisible by the n-th prime. - _Alonso del Arte_, Feb 07 2014

%H Harry J. Smith, <a href="/A060371/b060371.txt">Table of n, a(n) for n = 1..88</a> (adapted by Vincenzo Librandi, Oct 17 2017)

%H Takashi Agoh, Karl Dilcher and Ladislav Skula, <a href="https://doi.org/10.1090/S0025-5718-98-00951-X"> Wilson quotients for composite moduli</a>, Math. Comp. 67 (1998), 843-861. MR 98h:11003.

%H C. K. Caldwell, <a href="http://primes.utm.edu/glossary/page.php?sort=WilsonPrime">Wilson Primes</a>

%H R. Crandall, K. Dilcher and C. Pomerance, <a href="http://dx.doi.org/10.1090/S0025-5718-97-00791-6">A search for Wieferich and Wilson primes</a>, Math. Comp., 66 (1997), 433-449. MR 97c:11004.

%t Table[(Prime[n] - 1)! + 1, {n, 12}] (* _Alonso del Arte_, Feb 07 2014 *)

%o (PARI) { n=1; forprime (p=1, 524, write("b060371.txt", n++, " ", (p - 1)! + 1); ) } \\ _Harry J. Smith_, Jul 04 2009

%o (MAGMA) [Factorial(NthPrime(n)-1)+1: n in [1..15]]; // _Vincenzo Librandi_, Oct 17 2017

%Y Cf. A052295, A055469, A067186.

%Y Subsequence of A038507. - _Michel Marcus_, Oct 17 2017

%K nonn

%O 1,1

%A _Jason Earls_, Apr 01 2001

%E Corrected offset by _Alonso del Arte_, Feb 07 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 03:38 EDT 2020. Contains 335504 sequences. (Running on oeis4.)