login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060346
Numerators of sequence arising from study of Calabi-Yau manifolds.
1
-1, -3, -11, -217, -889, -6207, -395583, -11872529, -51190172, -3320575453, -71855148782, -1138862383991, -73603597626136, -585764974480039, -5810293262069806, -9158417736096173491, -75787432383189077231, -289633090947850663933
OFFSET
0,2
REFERENCES
P. Candelas et al., A pair of Calabi-yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), 21-74 (see p. 73).
EXAMPLE
-1/5, -3/50, -11/375, -217/12500, -889/78125, -6207/781250, ...
MAPLE
a := proc(n) option remember; local t1; if n<0 then RETURN(0) elif n=0 then RETURN(-1/5) elif n=1 then RETURN(-3/50) else t1 := 125*n*(n-1)*(20*n^2-40*n+23)*a(n-1) -125*(n-1)*(30*n^3-150*n^2+261*n-157)*a(n-2) +(2500*n^4-22500*n^3+76625*n^2-116875*n+67226)*a(n-3) -625*(n-3)^4*a(n-4); t1 := eval(t1); RETURN(t1/( 625*n^2*(n^2-1) )); fi; end;
CROSSREFS
Cf. A060347.
Sequence in context: A092840 A007156 A289170 * A145988 A165946 A253639
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Mar 30 2001
STATUS
approved