%I #17 Jan 17 2023 15:33:33
%S 4,8,9,14,15,16,24,25,26,27,32,33,34,35,36,90,91,92,93,94,95,114,115,
%T 116,117,118,119,120,140,141,142,143,144,145,146,147,182,183,184,185,
%U 186,187,188,189,190,200,201,202,203,204,205,206,207,208,209,212,213
%N Triangle T(m,n), 1 <= n <= m, read by rows: row m lists the first m consecutive composite numbers that are not in previous rows.
%H Robert Israel, <a href="/A060299/b060299.txt">Table of n, a(n) for n = 1..10000</a>
%e Triangle starts:
%e 4;
%e 8, 9;
%e 14, 15, 16;
%e 24, 25, 26, 27;
%e 32, 33, 34, 35, 36;
%e 90, 91, 92, 93, 94, 95; - _Robert Israel_, Jan 17 2023
%e First occurrence of 1 consecutive composite gives 4, first occurrence of 2 consecutive composites gives 8 and 9, the first subsequent, disjoint occurrence of 3 consecutive composites gives 14, 15 and 16, etc.
%p R:= NULL: m:= 1;
%p p:= 3:
%p while m < 30 do
%p q:= nextprime(p);
%p g:= q-p-1;
%p if g >= m then
%p R:= R, $(p+1)..(p+m);
%p p:= p+m;
%p m:= m+1;
%p else
%p p:= q
%p fi;
%p od:
%p R; # _Robert Israel_, Jan 17 2023
%Y First column gives A060064.
%K easy,nonn,tabl
%O 1,1
%A _Jason Earls_, Mar 25 2001
%E Name changed by _Robert Israel_, Jan 17 2023