login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of regular convex polytopes in n-dimensional space, or -1 if the number is infinite.
11

%I #18 Jun 16 2018 22:08:43

%S 1,1,-1,5,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

%T 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

%U 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3

%N Number of regular convex polytopes in n-dimensional space, or -1 if the number is infinite.

%D H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973.

%D B. Grünbaum, Convex Polytopes. Wiley, NY, 1967, p. 424.

%D P. McMullen and E. Schulte, Abstract Regular Polytopes, Encyclopedia of Mathematics and its Applications, Vol. 92, Cambridge University Press, Cambridge, 2002.

%H John Baez, <a href="http://math.ucr.edu/home/baez/platonic.html">Platonic Solids in All Dimensions</a>, Nov 12 2006

%H Brady Haran, Pete McPartlan, and Carlo Sequin, <a href="https://www.youtube.com/watch?v=2s4TqVAbfz4">Perfect Shapes in Higher Dimensions</a>, Numberphile video (2016)

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F a(n) = 3 for all n > 4. - _Christian Schroeder_, Nov 16 2015

%e a(2) = -1 because of the regular polygons in the plane.

%e a(3) = 5 because in R^3 the regular convex polytopes are the 5 Platonic solids.

%Y Cf. A000943, A000944, A053016, A063927, A093478, A093479.

%K sign,easy

%O 0,4

%A Ahmed Fares (ahmedfares(AT)my-deja.com), Mar 24 2001