login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Difference between 2n and the following prime.
8

%I #20 Nov 28 2023 14:26:48

%S 1,1,1,3,1,1,3,1,1,3,1,5,3,1,1,5,3,1,3,1,1,3,1,5,3,1,5,3,1,1,5,3,1,3,

%T 1,1,5,3,1,3,1,5,3,1,7,5,3,1,3,1,1,3,1,1,3,1,13,11,9,7,5,3,1,3,1,5,3,

%U 1,1,9,7,5,3,1,1,5,3,1,5,3,1,3,1,5,3,1,5,3,1,1,9,7,5,3,1,1,3,1,1,11,9,7,5

%N Difference between 2n and the following prime.

%H Michael De Vlieger, <a href="/A060266/b060266.txt">Table of n, a(n) for n = 1..10000</a>

%F Conjecture: Limit_{n->oo} (Sum_{k=1..n} a(k)) / (Sum_{k=1..n} log(2*k)) = 1. - _Alain Rocchelli_, Oct 24 2023

%p with(numtheory): [seq(nextprime(2*i)-2*i,i=1..256)];

%t d2n[n_]:=Module[{c=2n},NextPrime[c]-c]; Array[d2n,120] (* _Harvey P. Dale_, May 14 2011 *)

%t Table[NextPrime@ # - # &[2 n], {n, 120}] (* _Michael De Vlieger_, Feb 18 2017 *)

%o (PARI) a(n) = nextprime(2*n+1) - 2*n; \\ _Michel Marcus_, Feb 19 2017

%Y Cf. A020482, A049653, A060267, A060268, A060264.

%K nonn

%O 1,4

%A _Labos Elemer_, Mar 23 2001