login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smaller of twin primes whose middle term is a multiple of A002110(4)=210.
5

%I #14 Jan 29 2018 23:28:01

%S 419,1049,2309,2729,3359,5879,6089,6299,7349,7559,8819,9239,10499,

%T 10709,11549,11969,15329,18059,21839,25409,26249,26879,28349,29399,

%U 30869,31079,32969,33179,33599,33809,34649,35279,37589,40529,42839

%N Smaller of twin primes whose middle term is a multiple of A002110(4)=210.

%C Number of terms less than 10^k: 0, 0, 0, 1, 12, 80, 542, 3908, 29229, ... - _Muniru A Asiru_, Jan 29 2018

%H Harvey P. Dale, <a href="/A060230/b060230.txt">Table of n, a(n) for n = 1..1000</a>

%e For the pair {1049,1051} (1049+1051)/2 = 5*210.

%p select(n->isprime(n) and isprime(n+2), [seq(210*k - 1, k=1..10^3)]); # _Muniru A Asiru_, Jan 29 2018

%t Select[210*Range[250],And@@PrimeQ[#+{1,-1}]&]-1 (* _Harvey P. Dale_, Aug 25 2013 *)

%o (GAP) P:=Filtered([1..10^7], IsPrime);;

%o P1:=List(Filtered(Filtered(List([1..Length(P)-1], n -> [P[n],P[n+1]]), i -> i[2]-i[1]=2), j -> (j[1]+j[2]) mod 210 = 0), k -> k[1]); # _Muniru A Asiru_, Jan 29 2018

%o (PARI) is(n)=(n+1)%210==0 && isprime(n+2) && isprime(n) \\ _Charles R Greathouse IV_, Jan 29 2018

%Y A001359, A002110, A060229, A060231.

%K nonn

%O 1,1

%A _Labos Elemer_, Mar 21 2001

%E Minor edits by _Ray Chandler_, Apr 02 2009