login
Table T(n,k) by antidiagonals of n^k mod k [n,k >= 1].
4

%I #14 Aug 12 2023 11:10:29

%S 0,1,0,1,0,0,1,2,1,0,1,0,0,0,0,1,2,1,1,1,0,1,4,3,0,2,0,0,1,2,3,4,1,0,

%T 1,0,1,0,3,4,0,0,1,0,0,1,8,1,4,1,1,1,2,1,0,1,4,0,0,5,0,2,0,0,0,0,1,2,

%U 9,1,1,6,1,3,1,1,1,0,1,4,3,6,8,0,0,4,4,0,2,0,0,1,2,9,4,5,0,1,1,3,0,1,0,1,0

%N Table T(n,k) by antidiagonals of n^k mod k [n,k >= 1].

%H Seiichi Manyama, <a href="/A060154/b060154.txt">Antidiagonals n = 1..140, flattened</a>

%F T(n, k) = A051129(n, k)-n*A060155(n, k).

%e T(5,3) = 5^3 mod 3 = 125 mod 3 = 2.

%e Rows start:

%e 0, 1, 1, 1, 1, ...

%e 0, 0, 2, 0, 2, ...

%e 0, 1, 0, 1, 3, ...

%e 0, 0, 1, 0, 4, ...

%e 0, 1, 2, 1, 0, ...

%Y Rows include A057427, A015910, A056969.

%Y Columns include A000004, A000035 (several times), A010872, A010874, A010876, A021559 and other periodic sequences.

%Y Diagonals include A000004 and A057427.

%Y Cf. A114448.

%K nonn,tabl

%O 1,8

%A _Henry Bottomley_, Mar 12 2001