login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonzero digits in factorial base representation (A007623) of n; minimum number of transpositions needed to compose each permutation in the lists A060117 & A060118.
49

%I #38 Dec 30 2017 10:01:10

%S 0,1,1,2,1,2,1,2,2,3,2,3,1,2,2,3,2,3,1,2,2,3,2,3,1,2,2,3,2,3,2,3,3,4,

%T 3,4,2,3,3,4,3,4,2,3,3,4,3,4,1,2,2,3,2,3,2,3,3,4,3,4,2,3,3,4,3,4,2,3,

%U 3,4,3,4,1,2,2,3,2,3,2,3,3,4,3,4,2,3,3,4,3,4,2,3,3,4,3,4,1,2,2,3,2,3,2,3,3

%N Number of nonzero digits in factorial base representation (A007623) of n; minimum number of transpositions needed to compose each permutation in the lists A060117 & A060118.

%H Antti Karttunen, <a href="/A060130/b060130.txt">Table of n, a(n) for n = 0..40320</a>

%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>

%F a(0) = 0; for n > 0, a(n) = 1 + a(A257687(n)).

%F a(0) = 0; for n > 0, a(n) = A257511(n) + a(A257684(n)).

%F a(n) = A060129(n) - A060128(n).

%F a(n) = A084558(n) - A257510(n).

%F a(n) = A275946(n) + A275962(n).

%F a(n) = A275948(n) + A275964(n).

%F a(n) = A055091(A060119(n)).

%F a(n) = A069010(A277012(n)) = A000120(A275727(n)).

%F a(n) = A001221(A275733(n)) = A001222(A275733(n)).

%F a(n) = A001222(A275734(n)) = A001222(A275735(n)) = A001221(A276076(n)).

%F a(n) = A046660(A275725(n)).

%F a(A225901(n)) = a(n).

%F A257511(n) <= a(n) <= A034968(n).

%F A275806(n) <= a(n).

%F a(A275804(n)) = A060502(A275804(n)). [A275804 gives all the positions where this coincides with A060502.]

%F a(A276091(n)) = A260736(A276091(n)). [A276091 gives all the positions where this coincides with A260736.]

%e 19 = 3*(3!) + 0*(2!) + 1*(1!), thus it is written as "301" in factorial base (A007623). The count of nonzero digits in that representation is 2, so a(19) = 2.

%p A060130(n) = count_nonfixed(convert(PermUnrank3R(n), 'disjcyc'))-nops(convert(PermUnrank3R(n), 'disjcyc')) or nops(fac_base(n))-nops(positions(0, fac_base(n)))

%p fac_base := n -> fac_base_aux(n, 2); fac_base_aux := proc(n, i) if(0 = n) then RETURN([]); else RETURN([op(fac_base_aux(floor(n/i), i+1)), (n mod i)]); fi; end;

%p count_nonfixed := l -> convert(map(nops, l), `+`);

%p positions := proc(e, ll) local a, k, l, m; l := ll; m := 1; a := []; while(member(e, l[m..nops(l)], 'k')) do a := [op(a), (k+m-1)]; m := k+m; od; RETURN(a); end;

%p # For procedure PermUnrank3R see A060117

%t Block[{nn = 105, r}, r = MixedRadix[Reverse@ Range[2, -1 + SelectFirst[Range@ 12, #! > nn &]]]; Array[Count[IntegerDigits[#, r], k_ /; k > 0] &, nn, 0]] (* _Michael De Vlieger_, Dec 30 2017 *)

%o (Scheme)

%o (define (A060130 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (quotient n i) (+ 1 i) (+ s (if (zero? (remainder n i)) 0 1)))))))

%o ;; Two other implementations, that use memoization-macro definec:

%o (definec (A060130 n) (if (zero? n) n (+ 1 (A060130 (A257687 n)))))

%o (definec (A060130 n) (if (zero? n) n (+ (A257511 n) (A060130 (A257684 n)))))

%o ;; _Antti Karttunen_, Dec 30 2017

%Y Cf. A007623, A034968, A055091, A060117, A060118, A060128, A060129, A060131, A060502, A257687, A275734, A275735, A276076.

%Y Cf. A227130 (positions of even terms), A227132 (of odd terms).

%Y Cf. also A225901, A232094, A257694, A257695.

%Y The topmost row and the leftmost column in array A230415, the left edge of triangle A230417.

%Y Differs from similar A267263 for the first time at n=30.

%K nonn

%O 0,4

%A _Antti Karttunen_, Mar 02 2001

%E Example-section added, name edited, the old Maple-code moved away from the formula-section, and replaced with all the new formulas by _Antti Karttunen_, Dec 30 2017