login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers in Morse code, with 1 for a dot, 2 for a dash and 0 between digits/letters.
11

%I #18 Nov 03 2020 01:40:12

%S 22222,12222,11222,11122,11112,11111,21111,22111,22211,22221,

%T 12222022222,12222012222,12222011222,12222011122,12222011112,

%U 12222011111,12222021111,12222022111,12222022211,12222022221,11222022222,11222012222,11222011222,11222011122,11222011112,11222011111

%N Numbers in Morse code, with 1 for a dot, 2 for a dash and 0 between digits/letters.

%H Reinhard Zumkeller, <a href="/A060109/b060109.txt">Table of n, a(n) for n = 0..10000</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Morse_code">Morse code</a>

%F a(n) A007089(A060110(n)) = a(floor(n/10))*10^6 + a(n%10) for n > 9 and a(n) = 33333 - a(n-5) for n%10 > 4, where % is the modulo (remainder) operator. - _M. F. Hasler_, Jun 22 2020

%e a(10) = 12222022222 since 1 is ".----" and 0 is "-----".

%t With[{a = Association@ Array[# -> If[# < 6, PadRight[ConstantArray[1, #], 5, 2], PadRight[ConstantArray[2, # - 5], 5, 1]] &, 10, 0]}, Array[FromDigits@ Flatten@ Riffle[Map[Lookup[a, #] &, IntegerDigits[#]], 0] &, 25]] (* _Michael De Vlieger_, Nov 02 2020 *)

%o (Haskell)

%o import Data.List (inits, tails)

%o a060109 n = if n == 0 then 22222 else read (conv n) :: Integer where

%o conv 0 = []

%o conv x = conv x' ++ mCode !! d where (x', d) = divMod x 10

%o mCode = map ('0' :) (mc ++ (reverse $ init $ tail $ map reverse mc))

%o mc = zipWith (++) (inits "111111") (tails "22222")

%o -- _Reinhard Zumkeller_, Feb 20 2015

%o (PARI) apply( {A060109(n)=if(n>9,self()(n\10)*10^6)+fromdigits([1+(abs(k-n%10)>2)|k<-[3..7]])}, [0..39]) \\ _M. F. Hasler_, Jun 22 2020

%Y Cf. A059852 (Morse code for letters), A008777 (number of dots and dashes).

%Y Cf. A060110 (these base-3 numbers converted to decimal), A321332 (duration of the code for n).

%K base,nonn

%O 0,1

%A _Henry Bottomley_, Feb 28 2001