login
Denominator of coefficients of Euler polynomials (rising powers).
8

%I #18 Dec 30 2024 12:37:49

%S 1,2,1,1,1,1,4,1,2,1,1,1,1,1,1,2,1,2,1,2,1,1,1,1,1,1,1,1,8,1,2,1,4,1,

%T 2,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,4,1,

%U 2,1,4,1,1,1,4,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1

%N Denominator of coefficients of Euler polynomials (rising powers).

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.

%D Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 20, equations 20:4:1 - 20:4:8 at pages 177-178.

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%e The rational triangle A060096(n,m)/a(n,m) starts

%e n\m 0 1 2 3 4 5 6 7 8 ...

%e 0: 1

%e 1: -1/2 1

%e 2: 0 -1 1

%e 3: 1/4 0 -3/2 1

%e 4: 0 1 0 -2 1

%e 5: -1/2 0 5/2 0 -5/2 1

%e 6: 0 -3 0 5 0 -3 1

%e 7: 17/8 0 -21/2 0 35/4 0 -7/2 1

%e 8: 0 17 0 -28 0 14 0 -4 1

%e ...

%t Denominator[Flatten[Table[CoefficientList[EulerE[n, x], x], {n, 0, 13}]]] (* _Jean-François Alcover_, Apr 29 2011 *)

%Y For numerators see A060096.

%K nonn,easy,tabl,frac

%O 0,2

%A _Wolfdieter Lang_, Mar 29 2001