login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 8.
8

%I #17 Oct 01 2023 13:04:48

%S 1,0,1,1,2,2,4,4,6,6,9,9,13,12,16,15,18,15,18,12,12,2,-3,-20,-31,-59,

%T -81,-122,-160,-222,-280,-369,-457,-581,-708,-878,-1055,-1286,-1528,

%U -1833,-2158,-2559,-2985,-3504,-4059,-4721,-5433,-6271,-7172,-8224,-9355,-10660,-12067

%N Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 8.

%C Difference of the number of partitions of n+7 into 7 parts and the number of partitions of n+7 into 8 parts. - _Wesley Ivan Hurt_, Apr 16 2019

%H Ray Chandler, <a href="/A060027/b060027.txt">Table of n, a(n) for n = 0..1000</a>

%H P. A. MacMahon, <a href="https://doi.org/10.1112/plms/s1-17.1.139">Perpetual reciprocants</a>, Proc. London Math. Soc., 17 (1886), 139-151; Coll. Papers II, pp. 584-596.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%H <a href="/index/Rec#order_36">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, 0, 0, -1, 0, -1, 0, -1, 0, 1, 2, 1, 0, 1, -1, -1, -2, -1, -1, 1, 0, 1, 2, 1, 0, -1, 0, -1, 0, -1, 0, 0, 1, 1, -1).

%F a(n) = A026813(n+7) - A026814(n+7). - _Wesley Ivan Hurt_, Apr 16 2019

%t With[{nn=8},CoefficientList[Series[(1-x-x^nn)/Times@@(1-x^Range[nn]),{x,0,60}],x]] (* _Harvey P. Dale_, May 15 2016 *)

%Y Cf. A026813, A026814.

%Y Cf. For other values of N: A060022 (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), this sequence (N=8), A060028 (N=9), A060029 (N=10).

%K sign,easy

%O 0,5

%A _N. J. A. Sloane_, Mar 17 2001