login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = |{m : multiplicative order of 6 mod m=n}|.
14

%I #13 May 03 2022 11:28:22

%S 2,2,2,4,4,10,2,8,12,40,6,108,6,42,40,48,30,100,6,332,10,22,30,376,26,

%T 118,48,332,2,1436,6,448,54,222,88,7952,62,54,54,2680,6,698,30,476,

%U 1476,222,14,7632,28,438,478,1916,14,1872,84,11896,118,58,14,784452

%N a(n) = |{m : multiplicative order of 6 mod m=n}|.

%C The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).

%C Also, number of primitive factors of 6^n - 1. - _Max Alekseyev_, May 03 2022

%H Max Alekseyev, <a href="/A059888/b059888.txt">Table of n, a(n) for n = 1..420</a>

%F a(n) = Sum_{ d divides n } mu(n/d)*tau(6^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

%p with(numtheory):

%p a:= n-> add(mobius(n/d)*tau(6^d-1), d=divisors(n)):

%p seq(a(n), n=1..50); # _Alois P. Heinz_, Oct 12 2012

%Y Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), this sequence (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).

%Y Column k=6 of A212957.

%Y Cf. A000005, A008683, A053449, A057955, A274907.

%K nonn

%O 1,1

%A _Vladeta Jovovic_, Feb 06 2001