login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^8 *product_{i=1..t} (1-x^i) ).
8

%I #12 Jun 29 2020 09:50:22

%S 0,1,9,44,164,485,1278,2949,6382,12661,24101,43063,74932,124041,

%T 201597,315048,485627,724514,1071104,1539099,2197385,3062512,4246873,

%U 5765303,7804391,10359671,13728320,17882076,23264374,29792631,38154696

%N Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^8 *product_{i=1..t} (1-x^i) ).

%H G. E. Andrews, <a href="http://www.mat.univie.ac.at/~slc/s/s42andrews.html">Some debts I owe</a>, Séminaire Lotharingien de Combinatoire, Paper B42a, Issue 42, 2000; see (7.4).

%p Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i,i=1..n), n=1..101): end; # with k=8

%Y Cf. A000005 (k=1), A059819 (k=2), A059820 (k=3), ..., A059825 (k=8).

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Feb 24 2001