login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059812
Let g_n be the ball packing n-width for the manifold torus X interval; sequence gives denominator of (g_n/Pi)^2.
5
1, 4, 4, 4, 25, 25, 64, 289, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
OFFSET
1,2
LINKS
F. Miller Maley et al., Symplectic packings in cotangent bundles of tori, Experimental Mathematics, 9 (No. 3, 2000), 435-455.
FORMULA
From Colin Barker, Nov 06 2019: (Start)
G.f.: x*(1 + 2*x - 3*x^2 + 21*x^4 - 21*x^5 + 39*x^6 + 186*x^7 - 505*x^8 + 281*x^9) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>10.
a(n) = n for n>8.
(End)
EXAMPLE
1, 1/4, 1/4, 1/4, 4/25, 4/25, 9/64, 36/289, 1/9, 1/10, ...
KEYWORD
nonn,frac,easy
AUTHOR
N. J. A. Sloane, Feb 24 2001
EXTENSIONS
Edited by N. J. A. Sloane, May 23 2014
STATUS
approved