Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jul 15 2024 10:23:45
%S 3,29,53,113,131,173,191,233,239,251,281,293,419,431,443,491,593,641,
%T 653,659,683,743,761,809,911,953,1013,1049,1103,1223,1289,1499,1559,
%U 1583,1601,1733,1973,2003,2069,2129,2141,2273,2339,2351,2393,2399,2543
%N Initial primes of Cunningham chains of first type with length exactly 2. Primes in A059453 that survive as primes only one "2p-1 iteration", forming chains of exactly 2 terms.
%C Primes p such that {(p-1)/2, p, 2p+1, 4p+3} = {composite, prime, prime, composite}.
%H Amiram Eldar, <a href="/A059761/b059761.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale)
%H Chris Caldwell's Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=CunninghamChain">Cunningham chains</a>.
%H Warut Roonguthai, <a href="http://web.archive.org/web/20010405230842/http://ksc9.th.com/warut/cunningham.html">Yves Gallot's Proth.exe and Cunningham Chains</a>. [Wayback Machine link]
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CunninghamChain.html">Cunningham Chain</a>.
%e 53 is a term because 26 and 215 are composites, and 53 and 107 are primes.
%t ccftQ[p_]:=Boole[PrimeQ[{(p-1)/2,p,2 p+1,4 p+3}]]=={0,1,1,0}; Select[ Prime[ Range[400]],ccftQ] (* _Harvey P. Dale_, Jun 19 2021 *)
%Y Cf. A023272, A023302, A023330, A005384, A005385, A059452, A059453, A059454, A059455, A007700.
%K nonn
%O 1,1
%A _Labos Elemer_, Feb 20 2001