login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Carryless 11^n base 10; a(n) is carryless sum of 10*a(n-1) and a(n-1).
2

%I #16 Mar 10 2023 09:07:51

%S 1,11,121,1331,14641,150051,1650561,17155171,188606881,1964664691,

%T 10500200501,115502205511,1260524250621,13865766756831,

%U 141412323214141,1555535555355551,16000880008800061,176008680086800671

%N Carryless 11^n base 10; a(n) is carryless sum of 10*a(n-1) and a(n-1).

%H Seiichi Manyama, <a href="/A059734/b059734.txt">Table of n, a(n) for n = 0..999</a>

%H David Applegate, Marc LeBrun and N. J. A. Sloane, <a href="http://neilsloane.com/doc/carry1.pdf">Carryless Arithmetic (I): The Mod 10 Version</a>

%F a(n)=Sum[Mod[Binomial[n, m], 10]*10^m, {m, 0, n}]. - _Roger L. Bagula_ and _Gary W. Adamson_, Sep 14 2008

%e a(7)=17155171 since a(6)=1650561 and digits of a(7) are sum mod 10 of 1, 6+1=7, 5+6=1, 0+5=5, 5+0=5, 6+5=1, 1+6=7 and 1.

%t Table[Sum[Mod[Binomial[n, m], 10]*10^m, {m, 0, n}], {n, 0, 30}] - _Roger L. Bagula_ and _Gary W. Adamson_, Sep 14 2008

%o (PARI) a(n) = fromdigits(Vec(Pol(digits(11))^n)%10); \\ _Seiichi Manyama_, Mar 10 2023

%Y Cf. A004520, A006940, A008975, A361351.

%K base,nonn

%O 0,2

%A _Henry Bottomley_, Feb 20 2001