%I #44 Sep 08 2022 08:45:03
%S 0,2,2,6,12,30,72,182,462,1190,3080,8010,20880,54522,142506,372710,
%T 975156,2552006,6679640,17484942,45771990,119825862,313697232,
%U 821252306,2150037792,5628825650,14736381842,38580227142,101004149532,264431978670
%N a(n) = Fibonacci(n)*(Fibonacci(n) + 1).
%D L. Euler, Observationes analyticae, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 54.
%H Nathaniel Johnston, <a href="/A059727/b059727.txt">Table of n, a(n) for n = 0..300</a> [replacing table for n = 0..200 by Harry J. Smith]
%H G. E. Andrews, <a href="http://www.mat.univie.ac.at/~slc/opapers/s25andrews.html">Three aspects of partitions</a>, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TrinomialCoefficient.html">Trinomial Coefficient</a>
%F G.f.: 2*x*(1-2*x-x^2+x^3)/((1+x)*(1-3*x+x^2)*(1-x-x^2)).
%F a(n) = Fibonacci(n) + (1/5)*(Lucas(2*n) - 2*(-1)^n).
%o (PARI) a(n)=2*binomial(fibonacci(n)+1,2)
%o (PARI) { for (n=0, 200, f=fibonacci(n); write("b059727.txt", n, " ", f*(f + 1)); ) } \\ _Harry J. Smith_, Jun 29 2009
%o (Magma) [ Fibonacci(n)*(Fibonacci(n)+1): n in [0..100]]; // _Vincenzo Librandi_, Apr 15 2011
%o (Haskell)
%o a059727 n = a059727_list !! n
%o a059727_list = zipWith (*) a000045_list $ map (+ 1) a000045_list
%o -- _Reinhard Zumkeller_, Dec 17 2011
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Feb 09 2001