The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059715 Number of multi-directed animals on the triangular lattice. 0
 1, 3, 11, 44, 184, 790, 3450, 15242, 67895, 304267, 1369761, 6188002, 28031111, 127253141, 578694237, 2635356807, 12015117401, 54831125131, 250418753498, 1144434017309 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Counts certain animals that generalize directed animals. They are also equinumerous with a class of n-ominoes studied by Klarner in 1967. LINKS M. Bousquet-Mélou and A. Rechnitzer, Lattice animals and heaps of dimers M. Bousquet-Mélou and A. Rechnitzer, Lattice animals and heaps of dimers, Discrete Math. 258 (2002), no. 1-3, 235-274. J.-P. Bultel, S. Giraudo, Combinatorial Hopf algebras from PROs, arXiv preprint arXiv:1406.6903 [math.CO], 2014. D. A. Klarner, Cell growth problems, Canad. J. Math. 19 (1967) 851-863. FORMULA The generating function is known in closed form. It is big and non-D-finite. Bultel-Giraudo (2014), Prop. 3.2, give a g.f. - N. J. A. Sloane, Sep 21 2014 MATHEMATICA terms = 12; c[g_, t_] := c[g, t] = Sum[c[g, n, t], {n, 0, 2 terms}]; c[g_, n_, t_] := c[g, n, t] = P[g, n, t] - Sum[c[g, k, t] P[g, n-k-1, t], {k, 0, n-1}]; P[g_, n_, t_] := 1/F[g, n, t]; F[g_, n_, t_] := F[g, n, t] = If[n<=g, 1, F[g, n-1, t] - t F[g, n-g-1, t]]; Rest[CoefficientList[1-1/c[1, t] + O[t]^(terms+1), t]][[1 ;; terms]] (* Jean-François Alcover, Jul 25 2018 *) CROSSREFS Cf. A005773. Sequence in context: A167011 A319322 A059714 * A026748 A113174 A132840 Adjacent sequences:  A059712 A059713 A059714 * A059716 A059717 A059718 KEYWORD nonn,more AUTHOR Mireille Bousquet-Mélou, Feb 08 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 13:47 EST 2021. Contains 349413 sequences. (Running on oeis4.)