login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that 1p1, 3p3, 7p7 and 9p9 are all primes.
4

%I #20 Feb 23 2023 07:27:29

%S 53,2477,4547,5009,7499,8831,9839,11027,24821,26393,29921,36833,46073,

%T 46769,47711,49307,53069,59621,64283,66041,79901,84017,93263,115679,

%U 133103,151121,169523,197651,207017,236807,239231,255191,259949,265271,270071,300431,330047

%N Primes p such that 1p1, 3p3, 7p7 and 9p9 are all primes.

%C All terms == 1 (mod 6). The sequence is apparently infinite. There are 16486 terms up to 10^9. - _Zak Seidov_, Jan 17 2014

%C Intersection of A069687, A069688, A069689, and A069690. - _Zak Seidov_, Jan 17 2014

%H Zak Seidov, <a href="/A059694/b059694.txt">Table of n, a(n) for n = 1..10000</a>

%e 53 is a term because 1531, 3533, 7537 and 9539 are primes.

%o (Python)

%o from sympy import isprime, nextprime

%o from itertools import islice

%o def agen(): # generator of terms

%o p = 2

%o while True:

%o sp = str(p)

%o if all(isprime(int(d+sp+d)) for d in "1379"):

%o yield p

%o p = nextprime(p)

%o print(list(islice(agen(), 40))) # _Michael S. Branicky_, Feb 23 2023

%Y Cf. A059677, A032682, A059693.

%K nonn,base

%O 1,1

%A _Patrick De Geest_, Feb 07 2001