login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059668 Primes p such that x^36 = 2 has no solution mod p, but x^12 = 2 has a solution mod p. 4
919, 1423, 1999, 2143, 2287, 2791, 4177, 4519, 4663, 5113, 5167, 6679, 6967, 8713, 9631, 9649, 9721, 11863, 12241, 12583, 12799, 13591, 16111, 17551, 18127, 20359, 20719, 21529, 21727, 21799, 22807, 23041, 23473, 23743, 23833, 23887, 23977 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..357

MATHEMATICA

Select[Prime[Range[PrimePi[30000]]], ! MemberQ[PowerMod[Range[#], 36, #], Mod[2, #]]&& MemberQ[PowerMod[Range[#], 12, #], Mod[2, #]] &] (* Vincenzo Librandi, Sep 22 2013 *)

PROG

(MAGMA) [p: p in PrimesUpTo(24000) | not exists{x: x in ResidueClassRing(p) | x^36 eq 2} and exists{x: x in ResidueClassRing(p) | x^12 eq 2}]; // Vincenzo Librandi, Sep 21 2012

CROSSREFS

A000040, A049568, A049544, A059264.

Sequence in context: A088284 A020399 A084843 * A162870 A251133 A083142

Adjacent sequences:  A059665 A059666 A059667 * A059669 A059670 A059671

KEYWORD

nonn,easy

AUTHOR

Klaus Brockhaus, Feb 04 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 03:14 EDT 2020. Contains 334758 sequences. (Running on oeis4.)